849 resultados para Selective Delivery
Resumo:
The early eighties saw the introduction of liposomes as skin drug delivery systems, initially promoted primarily for localised effects with minimal systemic delivery. Subsequently, a novel ultradeformable vesicular system (termed "Transfersomes" by the inventors) was reported for transdermal delivery with an efficiency similar to subcutaneous injection. Further research illustrated that the mechanisms of liposome action depended on the application regime and the vesicle composition and morphology. Ethical, health and supply problems with human skin have encouraged researchers to use skin models. 'IYaditional models involved polymer membranes and animal tissue, but whilst of value for release studies, such models are not always good mimics for the complex human skin barrier, particularly with respect to the stratum corneal intercellular lipid domains. These lipids have a multiply bilayered organization, a composition and organization somewhat similar to liposomes, Consequently researchers have used vesicles as skin model membranes. Early work first employed phospholipid liposomes and tested their interactions with skin penetration enhancers, typically using thermal analysis and spectroscopic analyses. Another approach probed how incorporation of compounds into liposomes led to the loss of entrapped markers, analogous to "fluidization" of stratum corneum lipids on treatment with a penetration enhancer. Subsequently scientists employed liposomes formulated with skin lipids in these types of studies. Following a brief description of the nature of the skin barrier to transdermal drug delivery and the use of liposomes in drug delivery through skin, this article critically reviews the relevance of using different types of vesicles as a model for human skin in permeation enhancement studies, concentrating primarily on liposomes after briefly surveying older models. The validity of different types of liposome is considered and traditional skin models are compared to vesicular model membranes for their precision and accuracy as skin membrane mimics. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Interaction of G-protein-coupled receptors with beta-arrestins is an important step in receptor desensitization and in triggering "alternative" signals. By means of confocal microscopy and fluorescence resonance energy transfer, we have investigated the internalization of the human P2Y receptors 1, 2, 4, 6, 11, and 12 and their interaction with beta-arrestin-1 and -2. Co-transfection of each individual P2Y receptor with beta-arrestin-1-GFP or beta-arrestin-2-YFP into HEK-293 cells and stimulation with the corresponding agonists resulted in a receptor-specific interaction pattern. The P2Y(1) receptor stimulated with ADP strongly translocated beta-arrestin-2-YFP, whereas only a slight translocation was observed for beta-arrestin-1-GFP. The P2Y(4) receptor exhibited equally strong translocation for beta-arrestin-1-GFP and beta-arrestin-2YFP when stimulated with UTP. The P2Y(6), P2Y(11), and P2Y(12) receptor internalized only when GRK2 was additionally cotransfected, but beta-arrestin translocation was only visible for the P2Y(6) and P2Y(11) receptor. The P2Y(2) receptor showed a beta-arrestin translocation pattern that was dependent on the agonist used for stimulation. UTP translocated beta-arrestin-1-GFP and beta-arrestin-2-YFP equally well, whereas ATP translocated beta-arrestin-1-GFP to a much lower extent than beta-arrestin2- YFP. The same agonist-dependent pattern was seen in fluorescence resonance energy transfer experiments between the fluorescently labeled P2Y(2) receptor and beta-arrestins. Thus, the P2Y(2) receptor would be classified as a class A receptor when stimulated with ATP or as a class B receptor when stimulated with UTP. The ligand-specific recruitment of beta-arrestins by ATP and UTP stimulation of P2Y(2) receptors was further found to result in differential stimulation of ERK phosphorylation. This suggests that the two different agonists induce distinct active states of this receptor that show differential interactions with beta-arrestins.
Resumo:
The objective of this study was to determine insight in patients with Huntington's disease (HD) by contrasting patients' ability to rate their own behavior with their ability to rate a person other than themselves. HD patients and carers completed the Dysexecutive Questionnaire (DEX), rating themselves and each other at two time points. The temporal stability of these ratings was initially examined using these two time points since there is no published test-retest reliability of the DEX with this Population to date. This was followed by a comparison of patients' self-ratings and carer's independent ratings of patients by performing correlations with patients' disease variables, and in exploratory factor analysis was conducted on both sets of ratings. The DEX showed good test-retest reliability, with patients consistently and persistently underestimating the degree of their dysexecutive behavior, but not that of their carers. Patients' self-ratings and caters' ratings of patients both showed that dysexecutive behavior in HD can be fractionated into three underlying components (Cognition, Self-regulation, Insight), and the relative ranking of these factors was similar for both data sets. HD patients consistently underestimated the extent of only their own dysexecutive behaviors relative to carers' ratings by 26%, but were similar in ascribing ranks to the components of dysexecutive behavior. (c) 2005 Movement Disorder Society.
Resumo:
The visuo-spatial abilities of individuals with Williams syndrome (WS) have consistently been shown to be generally weak. These poor visuo-spatial abilities have been ascribed to a local processing bias by some [R. Rossen, E.S. Klima, U. Bellugi, A. Bihrle, W. Jones, Interaction between language and cognition: evidence from Williams syndrome, in: J. Beitchman, N. Cohen, M. Konstantareas, R. Tannock (Eds.), Language, Learning and Behaviour disorders: Developmental, Behavioural and Clinical Perspectives, Cambridge University Press, New York, 1996, pp. 367-392] and conversely, to a global processing bias by others [Psychol. Sci. 10 (1999) 453]. In this study, two identification versions and one drawing version of the Navon hierarchical processing task, a non-verbal task, were employed to investigate this apparent contradiction. The two identification tasks were administered to 21 individuals with WS, 21 typically developing individuals, matched by non-verbal ability, and 21 adult participants matched to the WS group by mean chronological age (CA). The third, drawing task was administered to the WS group and the typically developing (TD) controls only. It was hypothesised that the WS group would show differential processing biases depending on the type of processing the task was measuring. Results from two identification versions of the Navon task measuring divided and selective attention showed that the WS group experienced equal interference from global to local as from local to global levels, and did not show an advantage of one level over another. This pattern of performance was broadly comparable to that of the control groups. The third task, a drawing version of the Navon task, revealed that individuals with WS were significantly better at drawing the local form in comparison to the global figure, whereas the typically developing control group did not show a bias towards either level. In summary, this study demonstrates that individuals with WS do not have a local or a global processing bias when asked to identify stimuli, but do show a local bias in their drawing abilities. This contrast may explain the apparently contrasting findings from previous studies. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper describes a framework architecture for the automated re-purposing and efficient delivery of multimedia content stored in CMSs. It deploys specifically designed templates as well as adaptation rules based on a hierarchy of profiles to accommodate user, device and network requirements invoked as constraints in the adaptation process. The user profile provides information in accordance with the opt-in principle, while the device and network profiles provide the operational constraints such as for example resolution and bandwidth limitations. The profiles hierarchy ensures that the adaptation privileges the users' preferences. As part of the adaptation, we took into account the support for users' special needs, and therefore adopted a template-based approach that could simplify the adaptation process integrating accessibility-by-design in the template.
Resumo:
Media content distribution on-demand becomes more complex when performed on a mass scale involving various channels with distinct and dynamic network characteristics, and, deploying a variety of terminal devices offering a wide range of capabilities. It is practically impossible to create and prepackage various static versions of the same content to match all the varying demand parameters of clients for various contexts. In this paper we present a profiling management approach for dynamically personalised media content delivery on-demand integrated with the AXMEDIS Framework. The client profiles comprise the representation of User, Device, Network and Context of content delivery based on MPEG-21:DIA. Although the most challenging proving ground for this personalised content delivery has been the mobile testbed i.e. the distribution to mobile handsets, the framework described here can be deployed for disribution, by the AXMEDIS PnP module, through other channels e.g. satellite, Internet to a range of client terminals e.g. desktops, kiosks, IPtv and other terrminals whose baseline terminal capabilities can be made availabe by the manufacturers as is normal.
Resumo:
Listeners can attend to one of several simultaneous messages by tracking one speaker’s voice characteristics. Using differences in the location of sounds in a room, we ask how well cues arising from spatial position compete with these characteristics. Listeners decided which of two simultaneous target words belonged in an attended “context” phrase when it was played simultaneously with a different “distracter” context. Talker difference was in competition with position difference, so the response indicates which cue‐type the listener was tracking. Spatial position was found to override talker difference in dichotic conditions when the talkers are similar (male). The salience of cues associated with differences in sounds, bearings decreased with distance between listener and sources. These cues are more effective binaurally. However, there appear to be other cues that increase in salience with distance between sounds. This increase is more prominent in diotic conditions, indicating that these cues are largely monaural. Distances between spectra calculated using a gammatone filterbank (with ERB‐spaced CFs) of the room’s impulse responses at different locations were computed, and comparison with listeners’ responses suggested some slight monaural loudness cues, but also monaural “timbre” cues arising from the temporal‐ and spectral‐envelope differences in the speech from different locations.
Resumo:
There has been significant interest in the methodologies of controlled release for a diverse range of applications spanning drug delivery, biological and chemical sensors, and diagnostics. The advancement in novel substrate-polymer coupling moieties has led to the discovery of self-immolative linkers. This new class of linker has gained popularity in recent years in polymeric release technology as a result of stable bond formation between protecting and leaving groups, which becomes labile upon activation, leading to the rapid disassembly of the parent polymer. This ability has prompted numerous studies into the design and development of self-immolative linkers and the kinetics surrounding their disassembly. This review details the main concepts that underpin self-immolative linker technologies that feature in polymeric or dendritic conjugate systems and outlines the chemistries of amplified self-immolative elimination.
Resumo:
A major infrastructure project is used to investigate the role of digital objects in the coordination of engineering design work. From a practice-based perspective, research emphasizes objects as important in enabling cooperative knowledge work and knowledge sharing. The term ‘boundary object’ has become used in the analysis of mutual and reciprocal knowledge sharing around physical and digital objects. The aim is to extend this work by analysing the introduction of an extranet into the public–private partnership project used to construct a new motorway. Multiple categories of digital objects are mobilized in coordination across heterogeneous, cross-organizational groups. The main findings are that digital objects provide mechanisms for accountability and control, as well as for mutual and reciprocal knowledge sharing; and that different types of objects are nested, forming a digital infrastructure for project delivery. Reconceptualizing boundary objects as a digital infrastructure for delivery has practical implications for management practices on large projects and for the use of digital tools, such as building information models, in construction. It provides a starting point for future research into the changing nature of digitally enabled coordination in project-based work.
Resumo:
Flight necessitates that the feather rachis is extremely tough and light. Yet, the crucial filamentous hierarchy of the rachis is unknown—study hindered by the tight chemical bonding between the filaments and matrix. We used novel microbial biodegradation to delineate the fibres of the rachidial cortex in situ. It revealed the thickest keratin filaments known to date (factor >10), approximately 6 µm thick, extending predominantly axially but with a small outer circumferential component. Near-periodic thickened nodes of the fibres are staggered with those in adjacent fibres in two- and three-dimensional planes, creating a fibre–matrix texture with high attributes for crack stopping and resistance to transverse cutting. Close association of the fibre layer with the underlying ‘spongy’ medulloid pith indicates the potential for higher buckling loads and greater elastic recoil. Strikingly, the fibres are similar in dimensions and form to the free filaments of the feather vane and plumulaceous and embryonic down, the syncitial barbules, but, identified for the first time in 140+ years of study in a new location—as a major structural component of the rachis. Early in feather evolution, syncitial barbules were consolidated in a robust central rachis, definitively characterizing the avian lineage of keratin.