990 resultados para Sedimentation rates
Resumo:
High biogenic sedimentation rates in the late Neogene at DSDP Site 590 (1293 m) provide an exceptional opportunity to evaluate late Neogene (late Miocene to latest Pliocene) paleoceanography in waters transitional between temperate and warm-subtropical water masses. Oxygen and carbon isotope analyses and quantitative planktonic foraminiferal data have been used to interpret the late Neogene paleoceanographic evolution of this site. Faunal and isotopic data from Site 590 show a progression of paleoceanographic events between 6.7 and 4.3 Ma, during the latest Miocene and early Pliocene. First, a permanent depletion in both planktonic and benthic foraminiferal d13C, between 6.7 and 6.2 Ma, can be correlated to the globally recognized late Miocene carbon isotope shift. Second, a 0.5 per mil enrichment in benthic foraminiferal d18O between 5.6 and 4.7 Ma in the latest Miocene to early Pliocene corresponds to the latest Miocene oxygen isotopic enrichment at Site 284, located in temperate waters south of Site 590. This enrichment in d18O coincides with a time of cool surface waters, as is suggested by high frequencies of Neogloboquadrina pachyderma and low frequencies of the warmer-water planktonic foraminifers, as well as by an enrichment in planktonic foraminiferal d18O relative to the earlier Miocene. By 4.6 Ma, benthic foraminiferal d18O values become depleted and remain fairly stable until about 3.8 Ma. The early Pliocene (~4.3 to 3.2 Ma) is marked by a significant increase in biogenic sedimentation rates (37.7 to 83.3 m/m.y.). During this time, heaviest values in planktonic foraminiferal d18O are associated with a decrease in the gradient between surface and intermediate-water d13C and d18O, a 1.0 per mil depletion in the d13C of two species of planktonic foraminifers, and a mixture of warm and cool planktonic foraminiferal elements. These data suggest that localized upwelling at the Subtropical Divergence produced an increase in surface-water productivity during the early Pliocene. A two-step enrichment in benthic foraminiferal d18O occurs in the late Pliocene sequence at Site 590. A 0.3 per mil average enrichment at about 3.6 Ma is followed by a 0.5 per mil enrichment at 2.7 Ma. These two events can be correlated with the two-step isotopic enrichment associated with late Pliocene climatic instability and the initiation of Northern Hemisphere glaciation.
Resumo:
Deep-sea sediments of two cores from the western (TY93-929/P) and the southeastern (MD900963) Arabian Sea were used to study the variations of the Indian monsoon during previous climatic cycles. Core TY93-929/P was located between the SW monsoon driven upwelling centres off Somalia and Oman, which are characterized by large seasonal sea surface temperature (SST) and particle flux changes. By contrast, core MD900963, was situated near the Maldives platform, an equatorial ocean site with a rather small SST seasonality (less than 2°C). For both cores we have reconstructed SST variations by means of the unsaturation ratio of C37 alkenones, which is compared with the delta18O records established on planktonic foraminifera. In general, the SST records follow the delta18O variations, with an SST maximum during oxygen isotope stage 5.5 (the Last Interglacial at about 120-130 kyr) and a broad SST minimum during isotope stage 4 and 3.3 (approximately 40-50 kyr). The SST difference between the Holocene and the Last Glacial Maximum (LGM) is of the order of 2°C. In both cores the SSTs during isotope stage 6 are distinctly higher by 1-2°C than the cold SST minima during the last glacial cycle (LGM and stage 3). To reconstruct qualitatively the past productivity variations for the two cores, we used the concentrations and fluxes of alkenones and organic carbon, together with a productivity index based on coccolith species (Florisphaera profunda relative abundance). Within each core, there is a general agreement between the different palaeoproductivity proxies. In the southeastern Arabian Sea (core MD900963), glacial stages correspond to relatively high productivity, whereas warm interstadials coincide with low productivity. All time series of productivity proxies are dominated by a cyclicity of about 21-23 kyr, which corresponds to the insolation precessional cycle. A hypothesis could be that the NE monsoon winds were stronger during the glacial stages, which induced deepening of the surface mixed layer and injection of nutrients to the euphotic zone. By contrast, the records are more complicated in the upwelling region of the western Arabian Sea (core TY93-929/P). This is partly due to large changes in the sedimentation rates, which were higher during specific periods (isotope stages 6, 5.4, 5.2, 3 and 2). Unlike core MD900963, no simple relationship emerges from the comparison between the delta18O stratigraphy and productivity records. The greater complexity observed for core TY93-929/P could be the result of the superimposition of different patterns of productivity fluctuations for the two monsoon seasons, the SW monsoon being enhanced during interglacial periods, whereas the NE monsoon was increased during glacial intervals. A similar line of reasoning also could help explain the SST records by the superimposition of variations of three components: global atmospheric temperature, and SW and NE monsoon dynamics.
Resumo:
We use planktonic oxygen isotope (d18O) records spanning the last 30,000 years (kyr) to constrain the magnitude and spatial pattern of glacial cooling in the upwelling environment of the eastern equatorial Pacific (EEP). Fourteen new downcore d18O records were obtained from surface-dwelling planktonic foraminifera Globigerinoides sacculifer and Globigerinoides ruber in eight cores from the upwelling tongue of the EEP. All sites have sedimentation rates exceeding 5 cm/kyr and, with one exception, lie above the modern depth of the foraminiferal lysocline. Sites directly underlying the cool band of upwelling immediately south of the equator record mean late Holocene (LH)-Last Glacial Maximum (LGM) d18O amplitudes ranging between 1.0 and 1.3 per mil. We estimate that mean sea surface temperatures (SST) in this region during the LGM were on average 1.5 ± 0.5°C lower than the LH. Larger d18O amplitudes are observed in sites north of the equator, indicating a spatial pattern of reduced meridional SST gradient across the equator during the LGM. This result is supported by comparison of Mg/Ca SST reconstructions from two sites straddling the equator. We interpret the reduction of this gradient during the LGM as evidence for a less intense cold tongue-Intertropical Convergence Zone (ITCZ) frontal system, a more southerly position of the ITCZ, and weaker southeast equatorial trades in the EEP.
Resumo:
At Site 697 a 320 m thick Pleistocene and Pliocene section was recovered, consisting of hemipelagic terrigenous mud with varying amounts of diatoms, thin altered ash layers, and ice-rafted debris (IRD). Sedimentation rates range from 41 m/m.y. (upper Pleistocene) to 150 m/m.y. (lower Pliocene). Diatom percentage and sediment grain-size have been measured for the whole section with approximately one sample per 5,000 yr. IRD is most abundant in the lower Pliocene (sediments older than 4.5 Ma) following the first major West Antarctic glaciation. A decrease in IRD to near-zero above 3.2 Ma may record a transition from valley glaciers to a grounded ice-sheet on West Antarctica. Bottom current flow, recorded in sediments as the proportion of silt, was at a maximum around 3.0-3.3 Ma then gradually decreased until 0.5 Ma. In the upper Pleistocene, maxima in diatom percentage are assumed to occur during interglacials, implying reduced sea-ice cover; maxima in silt percentage correspond to diatom maxima, implying stronger bottom water flow during interglacials.
Resumo:
Recent clays cover the East Atlantic continental slopes. They are gray and poor in sand off Portugal (Cape Sines), but reddish brown to reddish gray and richer in sand off Morocco (Cape Mazagan). The majority of the 19 sediment cores, which were taken mainly on two profiles (Fig. 3), can be correlated by means of planktonic foraminifera (Figs. 27, 28). The following parameters seem to be well suited for this purpose: qualitative and quantitative distribution of the planktonic foraminiferal species and faunas, coiling ratios of three Globorotalia-species: G. crassaformis, G. hirsuta and G. truncatulinoides. Sediments from about 2000 m water depth show highest sedimentation rates off Portugal (> 20 cm/1000 yrs.), but off Morocco the lowest sedimentation rates (about 3 cm/1000 yrs.). The sediments are dated with planktonic foraminifera and 31 radiocarbon analyses and the stratigraphic interpretation is supported by the lithostratigraphy. Holocene faunas are distinguished from the Pleistocene ones by differences in species composition, lower dominances and higher diversities. The Holocene sediments show smaller differences of the foraminiferal numbers than the Pleistocene ones. During Holocene and Pleistocene the temperatures of the surface water masses (indicated by the planktonic foraminiferal faunas) show similar values nearshore and offshore off Morocco. Likewise, there is no apparent temperature gradient in the Pleistocene off Portugal; whereas here values increase offshore during the Holocene. The proportion of species indicating warmer water masses is generally higher off Morocco. The plankton/benthos ratio increases with water depth and reaches maximum values already at about 1000 m. The production rate for planktonic foraminifera is higher in the continental slope regions than in the open ocean, but their shells show typical solution phenomena already in water depths of less than 1000 m. A higher solutional rate was found in sediments from the Tagus Abyssal Plain, while sediments from Horse Shoe and Seine Abyssal Plain seem to be better preserved. In the Tagus Abyssal Plain solution is less important during late Pleistocene than during Holocene.
Resumo:
On the basis of 52 sediment cores, analyzed and dated at high resolution, the paleoceanography and climate of the Last Glacial Maximum (LGM) were reconstructed in detail for the Fram Strait and the eastern and central Arctic Ocean. Sediment composition and stable isotope data suggest three distinct paleoenvironments: (1) a productive region in the eastern to central Fram Strait and along the northern Barents Sea continental margin characterized by Atlantic Water advection, frequent open water conditions, and occasional local meltwater supply and iceberg calving from the Barents Sea Ice Sheet; (2) an intermediate region in the southwestern Eurasian Basin (up to 84-85°N) and the western Fram Strait characterized by subsurface Atlantic Water advection and recirculation, a moderately high planktic productivity, and a perennial ice cover that breaks up only occasionally; and (3) a central Arctic region (north of 85°N in the Eurasian Basin) characterized by a low-salinity surface water layer and a thick ice cover that strongly reduces bioproduction and bulk sedimentation rates. Although the total inflow of Atlantic Water into the Arctic Ocean may have been reduced during the LGM, its impact on ice coverage and halocline structure in the Fram Strait and southwestern Eurasian Basin was strong.
Resumo:
Organic petrologic (maceral analysis) and bulk organic-geochemical studies were performed on five sediment cores from the Eurasian continental margin to reconstruct the environmental changes during the last not, vert, similar13 000 yr. The core stratigraphy is based on AMS-14C dating, and correlation by magnetic susceptibility and lithostratigraphic characteristics. Variations in terrigenous, freshwater, and marine organic matter deposition document paleoceanographic and paleoclimatic changes during the transition from the last deglaciation to the Holocene. Glacigenic diamictons deposited in the St. Anna Trough (northern Kara Sea) during the Last Glacial Maximum (LGM) are characterized by reworked terrigenous organic matter. In contrast, the Laptev Sea shelf was not covered by an ice-sheet, but was exposed by the lowered sea level. Increased deposition of marine organic matter (MOM) during deglaciation indicates enhanced surface-water productivity, possibly related to influence of Atlantic waters. The occurrence of freshwater alginite gives evidence for river discharge to the Kara and Laptev Seas after the LGM. At the eastern Laptev Sea slope, the first influence of Atlantic water masses is indicated by an increase in the contents of MOM and dinoflagellate cysts, with Operculodinium centrocarpum prior to not, vert, similar10 000 yr BP. High sedimentation rates in the Kara and the Laptev Seas with the adjacent slope at the beginning of the Holocene are presumably related to increased freshwater and sediment discharge from the Siberian rivers. Evidence for elevated Holocene freshwater discharge to the Laptev Sea has been found between not, vert, similar9.8 and 9 kyr BP, at not, vert, similar5 kyr BP and at not, vert, similar2.5 kyr BP. In the Kara Sea, an increased freshwater signal is obvious at not, vert, similar8.5 kyr BP and at not, vert, similar5 kyr BP. Higher portions of MOM were accumulated in the St. Anna Trough and at the Eurasian continental margin at several intervals during the Holocene. Increased primary productivity during these intervals is explained by seasonally ice-free conditions possibly associated with increased inflow of Atlantic waters.
Resumo:
Modern sedimentary total organic carbon (TOC) content as a proxy for surface water export production was mapped on the shelf and on the upper continental slope of the Benguela upwelling system using 137 core tops. Shelf maxima in TOC can be correlated with maxima in surface water productivity. On the slope, high TOC contents are observed offshore from sites of strong modern upwelling. Estimates of modern TOC mass accumulation rates (MAR) show that approximately 85% of the total is accumulating on the shelf. TOC MAR were calculated, mapped, and budgeted for the Holocene and for the Last Glacial Maximum (LGM) using 19 sediment cores from the continental slope. During the LGM, centers of deposition and production have migrated offshore with respect to their Holocene positions. TOC accumulation on the continental slope was approximately 84% higher during the LGM than during the Holocene, possibly reflecting enhanced productivity. The TOC distribution patterns and sediment echo sounding data suggest that undercurrents strongly influence the sedimentation off Namibia. Winnowing and focusing result in great lateral heterogeneity of sedimentation rates and sediment properties. Individual cores therefore do not necessarily reflect general changes in export production. These results highlight the need for detailed regional studies based on a large number of sediment cores for highly heterogeneous high-productivity areas in order to derive general statements on total fluxes.
Resumo:
Two main alternating facies were observed at Ocean Drilling Program (ODP) Site 1165, drilled in 3357 m water depth into the Wild Drift (Cooperation Sea, Antarctica): a dark gray, laminated, terrigenous one (interpreted as muddy contourites) and a greenish, homogeneous, biogenic and coarse fraction-bearing one (interpreted as hemipelagic deposits with ice rafted debris [IRD]). These two cyclically alternating facies reflect orbitally driven changes (Milankovitch periodicities) recorded in spectral reflectance, bulk density, and magnetic susceptibility data and opal content changes. Superimposed on these short-term variations, significant uphole changes in average sedimentation rates, total clay content, IRD amount, and mineral composition were interpreted to represent the long-term lower to upper Miocene transition from a temperate climate to a cold-climate glaciation. The analysis of the short-term variations (interpreted to reflect ice sheet expansions controlled by 41-k.y. insolation changes) requires a quite closely spaced sampled record like that provided by the archive multisensor track. Among those, cycles are best described by spectral reflectance data and, in particular, by a parameter calculated as the ratio of the reflectivity in the green color band and the average reflectivity (gray). In this data report a numerical evaluation of spectral reflectance data was performed and substantiated by correlation with core photos to provide an objective description of the color variations within Site 1165 sediments. The resulting color description provides a reference to categorize the available samples in terms of facies and, hence, a framework for further analyses. Moreover, a link between visually described features and numerical series suitable for spectral analyses is provided.
Resumo:
Eocene sediments drilled at the East Tasman Plateau (ETP) exhibit well-defined cycles, high-resolution magnetic stratigraphy, and environmentally-controlled dinoflagellate and diatom distribution patterns. We derive a cyclostratigraphy from the spectral analysis of high-resolution elemental concentration records (Ca, Fe) for this shallow marine time series spanning the middle to early late Eocene (C16n.2n - C21). Changes in carbonate content, the ratio between Gonyaulacoid and Peridinioid dinocysts, and relative abundance of "oligotrophic" diatoms serve as proxies for a high-resolution climatic and sea-level history with high values representing high sea-level stands and decreased eutrophy of surface waters. Changing ratios between high latitude dinocysts versus cosmopolitan species provide clues on sea surface temperature trends and water mass exchange. Our results show that the relatively shallow-water middle Eocene environments of the ETP are influenced by orbitally-forced climatic cycles superimposed on third order relative sea-level changes. Changes in the dominance of Milankovitch frequency at ~38.6 Ma (late Eocene) is related to an initial deepening-step within the Tasmanian Gateway prior to the major deepening during the middle late Eocene (~35.5 Ma). Decreasing sedimentation rates at 38 Ma and 37.2 Ma reflect winnowing associated with sea-level fall. This episode is followed by renewed transgression. Dinocyst distribution patterns indicate high latitude, probably cool temperate surface water conditions throughout, with the exception of a sudden surge in cosmopolitan species near the base of subchron C18.2r, at ~41 Ma; this event is tentatively correlated to the Middle Eocene Climatic Optimum.
Resumo:
The textural and compositional characteristics of the 400 m sequence of Pleistocene wackestones and packstones intersected at Ocean Drilling Program (ODP) Site 820 reflect deposition controlled by fluctuations in sea-level, and by variations in the rate of sediment supply. The development of an effective reefal barrier adjacent to Site 820, between 760 k.y. and 1.01 Ma, resulted in a marked reduction in sediment accumulation rates on the central Great Barrier Reef outermost shelf and upper slope. This marked change corresponds with the transition from sigmoidal prograding seismic geometry in the lower 254 m of the sequence, to aggradational geometry in the top 146 m. The reduction in the rate of sediment accumulation that followed development of the reefal barrier also caused a fundamental change in the way in which fluctuations in sea-level controlled sediment deposition. In the lower, progradational portion of the sequence, sea-level cyclicity is represented by superimposed coarsening-upward cycles. Although moderately calcareous throughout (mostly 35%-75% CaCO3), the depositional system acted in a similar manner to siliciclastic shelf depositional systems. Relative sea-level rises resulted in deposition of more condensed, less calcareous, fine, muddy wackestones at the base of each cycle. Sea-level highstands resulted in increased sedimentation rates and greater influx of coarse bioclastic material. Continued high rates of sedimentation of both coarse bioclastic material and mixed carbonate and terrigenous mud marked falling and low sea-levels. This lower part of the sequence therefore is dominated by coarse packstones, with only thin wackestone intervals representing transgressions. In contrast, sea-level fluctuations following formation of an effective reefal barrier produced a markedly different sedimentary record. The more slowly deposited aggradational sequence is characterized by discrete thin interbeds of relatively coarse packstone within a predominantly fine wackestone sequence. These thin packstone beds resulted from relatively low sedimentation rates during falling and low sea-levels, with much higher rates of muddy sediment accumulation during rising and high sea-levels. The transition from progradational to aggradational sequence geometry therefore corresponds to a transition from a "siliciclastic-type" to a "carbonate-type" depositional system.
Resumo:
To assess the regional effects of glaciation on sedimentation in the Atlantic Ocean we compare sediment types, distributions, and rates between Recent (core top) and last glacial maximum (LGM: ~18,000 years B.P.) stratigraphic levels. Based upon smear slides and carbonate analyses in 178 cores we find that glacial age carbonate content is generally lower than Recent. During both the Recent and LGM, carbonate content shows an east/west asymmetry with western basins exhibiting lower carbonate values. Input of ice-rafted detritus into the North Atlantic during LGM time interrupts this topographic control on carbonate distribution considerably farther south than at present; in the South Atlantic this effect is minor. Comparison of LGM and Recent sediment distributions indicates that the LGM seafloor was dominated by biogenic oozes, calcareous clays, and clays, while the Recent is dominated by biogenic oozes and marls. Coarse-grained detritus is much more prevalent in LGM sediments, derived not only from glacial input but also from fluvial and aeolian sources. Sedimentation rates, calculated from LGM to Recent sediment thickness in cores, are <4 cm/1000 yr for most of the ocean. Higher rates are typical of the continental margin off the Amazon River, the North American Basin, and a small region off west equatorial Africa.
Resumo:
The derivation of a detailed sea-surface paleotemperature curve for the middle Miocene-Holocene (10-0 Ma) from ODP Site 811 on the Queensland Plateau, northeast Australia, has clarified the role of sea-surface temperature fluctuations as a control on the initiation and development of the extensive carbonate platforms of this region. This curve was derived from isotopic analyses of the planktonic foraminifer Globigerinoides ruber, and converted to temperature using the surface-water paleotemperature equation accounting for variations in global ice volume. The accuracy of these data were confirmed by derivation of paleotemperatures using the water column isotopic gradient (Delta delta18O), corrected for salinity and variations in seafloor water mass temperature. Results indicate that during this period surface-water temperatures were, on average, greater than the minimum required for tropical reef growth (20°C; Veron, 1986), with the exception of the late Miocene and earliest early Pliocene (10-4.9 Ma), when there were repeated intervals of temperatures between 18-20°C. Tropical reef growth on the Queensland Plateau was extensive from the early to early middle Miocene (~21-13 Ma), after which reef development began to decline. A lowstand near 11 Ma probably exposed shallower portions of the plateau; after re-immersion near 7 Ma, the areal extent of reef development was greatly reduced (~ 50%). Paleotemperature data from Site 811 indicate that decreased sea-surface temperatures were likely to have been instrumental in reducing the area of active reef growth on the Queensland Plateau. Reduced reefal growth rates continued until the late Pliocene or Quaternary, despite the increase of average sea-surface paleotemperatures to 22-23°C. Studies on modern corals show that when sea-surface temperatures are below ~24°C, as they were from the late Miocene to the Pleistocene off northeast Australia, corals are stressed and growth rates are greatly reduced. Consequently, when temperatures are in this range, corals have difficulty keeping pace with subsidence and changing environmental factors. In the late Pliocene, sedimentation rates increased due to increases in non-reefal carbonate production and falling sea levels. It was not until the mid-Quaternary (0.6-0.7 Ma) that sea-surface paleotemperatures increased above 24°C as a result of the formation of a western Coral Sea warm water pool. Because of age discrepancies, it is unclear exactly when an effective barrier developed on the central Great Barrier Reef; the formation of the warm water pool was likely to have either assisted the formation of this barrier and/or permitted increased coral growth rates. Fluctuations in sea-surface temperature can account for much of the observed spatial and temporal variations of reef growth and carbonate platform distribution off northeast Australia, and therefore we conclude that paleotemperature variations are a critical control on the development of carbonate platforms, and must be considered an important cause of ancient platform "drowning".
Resumo:
The technical details of drilling and coring at the Kirchrode I and II sites are presented. At these sites, a sequence of claystones and marlstones from an Albian shelf basin was recovered. Constraints on the ages of the sediments in the two boreholes are provided by the occurrence of the inoceramid bivalve Actinoceramus sulcatus, the first appearance of which is used to define the Middle/Upper Albian boundary and by observed facies changes that can be correlated to the established lithostratigraphy. The cores from the two boreholes provide a rather complete, 285-m-long sequence of the Upper Albian, with a 155.5-m-long overlap. Analysis of the tectonic structures showed considerable shortening in the Middle and Lower Albian part of the sequence due to normal faulting. Of the Upper Albian, only the lowermost part is affected by faults. The increase in sedimentation rates of terrigenous detritus and of marine biogenic carbonate, which occurs in the basal part of the C. auritus Subzone, is interpreted to reflect a regional change to a more humid climate and regional tectonic movements (uplift of the Rhenish Bohemian massif, subsidence of the Lower Saxony basin intensified locally by halokinetic movements). The further increase in marine productivity in the latest Albian may be related to upwelling of more nutrient-rich deep water along submarine relief in this shelf sea. Identification of Milankovitch cyclicity documented by the fluctuating CaCO3 contents of the sediments is used (i) to constrain the minimum time represented by the Upper Albian deposits, and (ii) to determine the duration of the sea level cycles (Cycle V: >=1.6 Ma, Cycle VI: >=2 Ma), and (iii) to establish the duration of the Late Albian ammonite subzones (e.g. Callihoplites auritus Subzone: 2.1 Ma). Average sedimentation rates determined from the identified 100-ka eccentricity cycles show a stepwise increase in sedimentation rates from 1-2 cm/1000 a in the Lower Albian dark claystones to 7-13 cm/1000 a in the late Late Albian. In addition to the general deepening trend through the Late Albian, two, nearly completely documented 3rd-order sea-level cycles in the Upper Albian of Kirchrode I were recognised, plus another one, cut short by faulting, at the base of the Upper Albian (documented in Kirchrode II). These global sea-level cycles were identified on the basis (a) of the sequence of the abundance maxima of selected benthos and plankton groups, (b) of trends in the fluctuations of the CaCO3 content, and (c) of the abundance of glauconite. The transgression periods in this Upper Albian deep shelf-basin are characterised by intensified circulation. This intensified circulation is found to have affected first the surface-near waters, resulting e.g. in an increase in the abundance of immigrant plankton and nekton species from the Tethys. At a later stage the deep water was affected, supporting then an increased population of suspension-feeding benthos, and causing condensation and erosion in the sediment at the sea floor.
Resumo:
Accurate dating of lagoon sediments has been a difficult problem, although lagoon profiles, usually with high deposition rates, have a great potential for high-resolution climate reconstruction. We report 26 high-precision TIMS U-series dates (on 25 coral branches) and five AMS C-14 dates (on foraminifera) for a 15.4-m long lagoon core from Yongshu Reef, Nansha area, southern South China Sea. All the dates are in the correct stratigraphical sequence, providing the best chronology so far reported for lagoon deposits. The results reveal a similar to 4000-a continuous depositional history, with sedimentation rates varying from 0.8 to 24.6 mm a(-1), with an average of 3.85 mm a(-1), which corresponds to an average net carbonate accumulation rate of similar to 2700 g CaCO3 m(-2) a(-1), significantly higher than the mean value (800 +/- 400 g CaCO3 m(-2) a(-1)) used for lagoons in general in previous studies of global carbonate budget. Episodes of accelerated depositions within the last 1000 years correlate well with strong storm events identified by U-series dates of storm-transported coral blocks in the area. However, in the longer term, the sedimentation rates during the past 1000 years were much higher than earlier on, probably due to more vigorous wave-reef interaction as a result of relative sea-level fall since 500 AD and expansion of reef flat area, supplying more sediments. The coral TIMS U-series ages and foraminifera AMS 14C dates reveal intriguing apparent radiocarbon reservoir ages (R) from 572 to 1052 years, which are much higher than global mean values of similar to 400 years. (c) 2006 Elsevier Ltd. All rights reserved.