999 resultados para Second Empire
Resumo:
Ex-libris gravé de Caumartin à l'intérieur de la couverture.
Resumo:
The long-term mean properties of the global climate system and those of turbulent fluid systems are reviewed from a thermodynamic viewpoint. Two general expressions are derived for a rate of entropy production due to thermal and viscous dissipation (turbulent dissipation) in a fluid system. It is shown with these expressions that maximum entropy production in the Earth s climate system suggested by Paltridge, as well as maximum transport properties of heat or momentum in a turbulent system suggested by Malkus and Busse, correspond to a state in which the rate of entropy production due to the turbulent dissipation is at a maximum. Entropy production due to absorption of solar radiation in the climate system is found to be irrelevant to the maximized properties associated with turbulence. The hypothesis of maximum entropy production also seems to be applicable to the planetary atmospheres of Mars and Titan and perhaps to mantle convection. Lorenz s conjecture on maximum generation of available potential energy is shown to be akin to this hypothesis with a few minor approximations. A possible mechanism by which turbulent fluid systems adjust themselves to the states of maximum entropy production is presented as a selffeedback mechanism for the generation of available potential energy. These results tend to support the hypothesis of maximum entropy production that underlies a wide variety of nonlinear fluid systems, including our planet as well as other planets and stars
Resumo:
The second differential of the entropy is used for analysing the stability of a thermodynamic climatic model. A delay time for the heat flux is introduced whereby it becomes an independent variable. Two different expressions for the second differential of the entropy are used: one follows classical irreversible thermodynamics theory; the second is related to the introduction of response time and is due to the extended irreversible thermodynamics theory. the second differential of the classical entropy leads to unstable solutions for high values of delay times. the extended expression always implies stable states for an ice-free earth. When the ice-albedo feedback is included, a discontinuous distribution of stable states is found for high response times. Following the thermodynamic analysis of the model, the maximum rates of entropy production at the steady state are obtained. A latitudinally isothermal earth produces the extremum in global entropy production. the material contribution to entropy production (by which we mean the production of entropy by material transport of heat) is a maximum when the latitudinal distribution of temperatures becomes less homogeneous than present values
Resumo:
Collection : Bibliothèque pour tous
Resumo:
This paper focuses on the connection between the Brauer group and the 0-cycles of an algebraic variety. We give an alternative construction of the second l-adic Abel-Jacobi map for such cycles, linked to the algebraic geometry of Severi-Brauer varieties on X. This allows us then to relate this Abel-Jacobi map to the standard pairing between 0-cycles and Brauer groups (see [M], [L]), completing results from [M] in this direction. Second, for surfaces, it allows us to present this map according to the more geometrical approach devised by M. Green in the framework of (arithmetic) mixed Hodge structures (see [G]). Needless to say, this paper owes much to the work of U. Jannsen and, especially, to his recently published older letter [J4] to B. Gross.