973 resultados para Saranac Lake Region (N.Y.)--Remote-sensing maps.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth of large cities is usually accelerated and disorganized, which causes social, economical and infrastructural conflicts and frequently, occupation in illegal areas. For a better administration of these areas, the public manager needs information about their location. This information can be obtained through land utilization and land cover maps, where orbital images of remote sensing are used as one of the most traditional sources of data. In this context, the present work tested the applicability of the object-based classification to categorize two slum areas, taking into account the structure of the streets, size of the huts, distance between the houses, among other parameters. These area combinations of physical aspects were analyzed using the image IKONOS II and the software eCognition. Slum areas tend to be, to the contrary of the planned areas, disarranged, with narrow streets, small houses built with a variety of materials and without definition of blocks. The results of land cover classification for slum areas are encouraging because they are accurate and little ambiguous in the classification process. Thus, it would allow its utilization by urban managers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The central and western portion of the S̃ao Paulo State has large areas of sugar cane plantations, and due to the growing demand for biofuels, the production is increasing every year. During the harvest period some plantation areas are burnt a few hours before the manual cutting, causing significant quantities of biomass burning aerosol to be injected into the atmosphere. During August 2010, a field campaign has been carried out in Ourinhos, situated in the south-western region of S̃ao Paulo State. A 2-channel Raman Lidar system and two meteorological S-Band Doppler Radars are used to indentify and quantify the biomass burning plumes. In addiction, CALIPSO Satellite observations were used to compare the aerosol optical properties detected in that region with those retrieved by Raman Lidar system. Although the campaign yielded 30 days of measurements, this paper will be focusing only one case study, when aerosols released from nearby sugar cane fires were detected by the Lidar system during a CALIPSO overpass. The meteorological radar, installed in Bauru, approximately 110 km northeast from the experimental site, had recorded echoes (dense smoke comprising aerosols) from several fires occurring close to the Raman Lidar system, which also detected an intense load of aerosol in the atmosphere. HYSPLIT model forward trajectories presented a strong indication that both instruments have measured the same air masss parcels, corroborated with the Lidar Ratio values from the 532 nm elastic and 607 nm Raman N2 channel analyses and data retrieved from CALIPSO have indicated the predominance of aerosol from biomass burning sources. © 2011 SPIE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Works of linear engineering such as roads, pipelines and transmission lines have specific mapping due to their large scale impact on the environment, thus requiring mapping methods that are both efficient and of low cost. This paper presents a proposal of Geoenvironmental mapping for works linear. The work chosen for the implementation of the method was the Osvat/Osplan pipeline located in the cities of São Sebastião and Caraguatatuba. The geoenvironment mapping was elaborate trough photo-interpretation of images of the ETM+/Landsat-7 sensor and analysis of the drainage network, thus resulting in the partitioning of the geoenvironmental units and the fracture area (structural lineaments and lines of strikes), these maps were subsequently integrated into a product called Map of environmental susceptibility to gravitational and erosive processes, which helped define the areas with potential geotechnical problems that could damage both the pipeline and the environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a method for the automatic extraction of building roof contours from a LiDAR-derived digital surface model (DSM). The method is based on two steps. First, to detect aboveground objects (buildings, trees, etc.), the DSM is segmented through a recursive splitting technique followed by a region merging process. Vectorization and polygonization are used to obtain polyline representations of the detected aboveground objects. Second, building roof contours are identified from among the aboveground objects by optimizing a Markov-random-field-based energy function that embodies roof contour attributes and spatial constraints. Preliminary results have shown that the proposed methodology works properly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research is based on the physical characterization of the environment to support definition of the best land use for the county of Colorado D'Oeste, in State of Rondônia, Brazil. Remote sensing and geoprocessing techniques were applied to support the preparation of a Geoenvironmental Zoning, which was used to define strategies of territorial and environmental management in that county. Digital and analogical remote sensing products, acquired by satellites, and additional cartographic and thematic maps allowed a morphostructural analysis to define low and high structural associated study site tectonic. Subsequently, this information was used to support analysis of the physiographic compartmentation of the study area. Based on this study information, it is possible to define geoenvironmental subzones and local hidrological regime, soils, mineral components, texture, color, and sedimentary materials. By integrating previous described information, a synthesis cartographic map generated. Accordingly, this Cartographic Sheet spatially defined the best land use over the study area, indicates zones for conservation, agricultural, and regeneration (areas that should be recovered). Finally, the results of this research can contribute and support governmental and non-governmental organization and local communities could improve land use and soil management, avoiding natural resource destruction and future land scarcity in the county of Colorado D'Oeste.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The confluence of Ivaí River together with the Paraná one is located near Icaraíma city on the Northwest of Paraná State. In this region, several paleochannels showed quaternary dynamic of Ivaí and Paraná Rivers floodplain. The aim of study was to apply multispectral indices and a data transformation of Landsat 5 TM data, associated with fieldwork and sedimentary facies to identify paleochannels. The results of the Normalized Difference Vegetation, Normalized Difference Water e Modificated Normalized Difference Water indices did not show satisfactory gains. However, the Tasseled Cap Wetness has provided an important gain of information on recognizing paleochannels facies. Through the remote sensing results sediment cores were realized and the sedimentary facies showed its correspondence with remote sensing interpretation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work aimed at characterizing geological features that identify areas with high ruptibility (fracturing) in the Osvat/Osplan pipeline in São Sebastião, São Paulo. The analysis of ruptile geological structures (lines of strikes and structural lineaments) through the use of orbital remote sensing was used as systematic mapping. The analysis of these features enables the inference of factors, such as permeability, infiltration and degree of shear in the region, factors which influence the processes of erosion and landslides in the area. On the map of structural lineaments, points of lineaments intersection from different directions were analyzed, followed by the counting of the frequency of these items per unit area, allowing the statistical modeling of spatial distribution, generating the map of density of structural lineament intersections, which allows determining areas with the highest percolation of fluid in the rock structure. However, on the map of lines of strikes, a space analysis was conducted to identify the two directions with higher frequency of lines of strikes in order to establish the maximums 1 and 2 and to identify the areas of abrupt changes of direction of these strike lines. In such areas where abrupt changes of directions of maximum lines of strikes occur, consequently there will be intense percolation of fluids, responsible for higher alterability of the rock/soil complex, facilitating the installation of erosion processes and landslides, increasing the area instability and consequently the vulnerability of the pipeline.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional methods of submerged aquatic vegetation (SAV) survey last long and then, they are high cost. Optical remote sensing is an alternative, but it has some limitations in the aquatic environment. The use of echosounder techniques is efficient to detect submerged targets. Therefore, the aim of this study is to evaluate different kinds of interpolation approach applied on SAV sample data collected by echosounder. This study case was performed in a region of Uberaba River - Brazil. The interpolation methods evaluated in this work follow: Nearest Neighbor, Weighted Average, Triangular Irregular Network (TIN) and ordinary kriging. Better results were carried out with kriging interpolation. Thus, it is recommend the use of geostatistics for spatial inference of SAV from sample data surveyed with echosounder techniques. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The municipality of Petrolina, located in the semi-arid region of Brazil, is highlighted as an important agricultural growing region, however the irrigated areas have cleared natural vegetation inducing a loss of biodiversity. To analyze the contrast between these two ecosystems the large scale values of biomass production (BIO), evapotranspiration (ET) and water productivity (WP) were quantified. Monteithś equation was applied for estimating the absorbed photosynthetically active radiation (APAR), while the new SAFER (Simple Algorithm For Evapotranspiration Retrieving) algorithm was used to retrieve ET. The water productivity (WP) was analysed by the ratio of BIO by ET at monthly time scale with four bands of MODIS satellite images together with agrometeorological data for the year of 2011. The period with the highest water productivity values were from March to April in the rainy period for both irrigated and not irrigated conditions. However the largest ET rates were in November for irrigated crops and April for natural vegetation. More uniformity of the vegetation and water variables occurs in natural vegetation, evidenced by the lower values of standard deviation when comparing to irrigated crops, due to the different crop stages, cultural and irrigation managements. The models applied with MODIS satellite images on a large scale are considered to be suitable for water productivity assessments and for quantifying the effects of increasing irrigated areas over natural vegetation on regional water consumption in situations of quick changing land use pattern. © 2012 SPIE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The water column overlying the submerged aquatic vegetation (SAV) canopy presents difficulties when using remote sensing images for mapping such vegetation. Inherent and apparent water optical properties and its optically active components, which are commonly present in natural waters, in addition to the water column height over the canopy, and plant characteristics are some of the factors that affect the signal from SAV mainly due to its strong energy absorption in the near-infrared. By considering these interferences, a hypothesis was developed that the vegetation signal is better conserved and less absorbed by the water column in certain intervals of the visible region of the spectrum; as a consequence, it is possible to distinguish the SAV signal. To distinguish the signal from SAV, two types of classification approaches were selected. Both of these methods consider the hemispherical-conical reflectance factor (HCRF) spectrum shape, although one type was supervised and the other one was not. The first method adopts cluster analysis and uses the parameters of the band (absorption, asymmetry, height and width) obtained by continuum removal as the input of the classification. The spectral angle mapper (SAM) was adopted as the supervised classification approach. Both approaches tested different wavelength intervals in the visible and near-infrared spectra. It was demonstrated that the 585 to 685-nm interval, corresponding to the green, yellow and red wavelength bands, offered the best results in both classification approaches. However, SAM classification showed better results relative to cluster analysis and correctly separated all spectral curves with or without SAV. Based on this research, it can be concluded that it is possible to discriminate areas with and without SAV using remote sensing. © 2013 by the authors; licensee MDPI, Basel, Switzerland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The precision agriculture technologies such as the spatial variability of soil attributes have been widely studied mostly with sugarcane. Among these technologies have been recently highlighted the use of the vegetation index derived from remote sensing products, such as powerful tools indicating the development of vegetation. This study aimed to analyze the spatial variability of clay content, pH and phosphorus in an Oxisol in an area with sugarcane production, and correlate with the Normalized Difference Vegetation Index (NDVI). The georeferenced grid was created for the soil properties (clay, phosphorus and pH) and generated the maps of spatial variability. For these same sites were calculated the NDVI, in addition to mapping of this ratio, the evaluation of the spatial correlation between this and other studied properties. The clay and phosphorus content showed positive spatial correlation with the NDVI, while no spatial correlation was observed between NDVI and pH. The satellite images from the sensor ETM + Landsat were used to correlate to NDVI to observe the spatial variability of the studied attributes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Through the geotechnology's use, the aim of this study was to characterize the urban occupation interference and occurrence of floods in the upstream area of watershed from the stream Wenzel (Rio Claro-SP/Brazil). Urbanized watersheds are composed of a variety of features and the development of cartographic material allowed the analysis of the evolution of land used for 1958 and 2006 scenarios. The thematic maps were generated using software Spring 4.3.3, wherein it got the separation of matters from vegetation cover and other intra urban features. Procedures of digital processes and classification of surface cover allowed quantifying the occupied area by each coverage type: woody vegetation, grass, grass with bare soil, bare soil, building, asphaltic sheets and exposed soil. Quantification of the different covers' occupied areas allowed relating the parameter Curve Number (Soil Conservation Service) as efficient methodology for runoff values estimative. The results indicate vegetation cover's reduction, intensive surface's sealing and suppression of water bodies. These factors imply changes of hydrological dynamics of the source, increasing flow and transfer of larger volumes of water and flood peaks to downstream sectors. The use of geotechnology allowed analyzing the evolution of urbanization and it permits also to infer about trends for future or inadequate occupancy to hydrological and environmental point of view. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brazil is a major sugarcane producer and São Paulo State cultivates 5.5 million hectares, close to 50% of Brazil's sugarcane area. The rapid increase in production has brought into question the sustainability of biofuels, especially considering the greenhouse gas (GHG) emissions associated to the agricultural sector. Despite the significant progress towards the green harvest practices, 1.67 million hectares were still burned in São Paulo State during the 2011 harvest season. Here an emissions inventory for the life cycle of sugarcane agricultural production is estimated using IPCC methodologies, according to the agriculture survey data and remote sensing database. Our hypothesis is that 1.67 million hectares shall be converted from burned to green harvest scenarios up to years 2021 (rate 1), 2014 (rate 2) or 2029 (rate 3). Those conversions would represent a significant GHG mitigation, ranging from 50.5 to 70.9 megatons of carbon dioxide equivalent (Mt CO2eq) up to 2050, depending on the conversion rate and the green harvest systems adopted: conventional (scenario S1) or conservationist management (scenario S2). We show that a green harvest scenario where crop rotation and reduced soil tillage are practiced has a higher mitigation potential (70.9 Mt CO2eq), which is already practiced in some of the sugarcane areas. Here we support the decision to not just stop burning prior to harvest, but also to consider other better practices in sugarcane areas to have a more sustainable sugarcane based ethanol production in the most dense cultivated sugarcane region in Brazil. © 2013 Elsevier Ltd. All rights reserved.