925 resultados para Sample-sample two dimensional correlation spectroscopy (SS 2D)
Resumo:
Free drug measurement and pharmacodymanic markers provide the opportunity for a better understanding of drug efficacy and toxicity. High-performance liquid chromatography (HPLC)-mass spectrometry (MS) is a powerful analytical technique that could facilitate the measurement of free drug and these markers. Currently, there are very few published methods for the determination of free drug concentrations by HPLC-MS. The development of atmospheric pressure ionisation sources, together with on-line microdialysis or on-line equilibrium dialysis and column switching techniques have reduced sample run times and increased assay efficiency. The availability of such methods will aid in drug development and the clinical use of certain drugs, including anti-convulsants, anti-arrhythmics, immunosuppressants, local anaesthetics, anti-fungals and protease inhibitors. The history of free drug measurement and an overview of the current HPLC-MS applications for these drugs are discussed. Immunosuppressant drugs are used as an example for the application of HPLC-MS in the measurement of drug pharmacodynamics. Potential biomarkers of immunosuppression that could be measured by HPLC-MS include purine nucleoside/nucleotides, drug-protein complexes and phosphorylated peptides. At the proteomic level, two-dimensional gel electrophoresis combined with matrix-assisted laser desorption/ionisation time-of-flight (TOF) MS is a powerful tool for identifying proteins involved in the response to inflammatory mediators. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
We have employed an inverse engineering strategy based on quantitative proteome analysis to identify changes in intracellular protein abundance that correlate with increased specific recombinant monoclonal antibody production (qMab) by engineered murine myeloma (NSO) cells. Four homogeneous NSO cell lines differing in qMab were isolated from a pool of primary transfectants. The proteome of each stably transfected cell line was analyzed at mid-exponential growth phase by two-dimensional gel electrophoresis (2D-PAGE) and individual protein spot volume data derived from digitized gel images were compared statistically. To identify changes in protein abundance associated with qMab clatasets were screened for proteins that exhibited either a linear correlation with cell line qMab or a conserved change in abundance specific only to the cell line with highest qMab. Several proteins with altered abundance were identified by mass spectrometry. Proteins exhibiting a significant increase in abundance with increasing qMab included molecular chaperones known to interact directly with nascent immunoglobulins during their folding and assembly (e.g., BiP, endoplasmin, protein disulfide isomerase). 2D-PAGE analysis showed that in all cell lines Mab light chain was more abundant than heavy chain, indicating that this is a likely prerequisite for efficient Mab production. In summary, these data reveal both the adaptive responses and molecular mechanisms enabling mammalian cells in culture to achieve high-level recombinant monoclonal antibody production. (C) 2004 Wiley Periodicals, Inc.
Resumo:
OBJECTIVES We sought to determine whether assessment of left ventricular (LV) function with real-time (RT) three-dimensional echocardiography (3DE) could reduce the variation of sequential LV measurements and provide greater accuracy than two-dimensional echocardiography (2DE). BACKGROUND Real-time 3DE has become feasible as a standard clinical tool, but its accuracy for LV assessment has not been validated. METHODS Unselected patients (n = 50; 41 men; age, 64 +/- 8 years) presenting for evaluation of LV function were studied with 2DE and RT-3DE. Test-retest variation was performed by a complete restudy by a separate sonographer within 1 h without alteration of hemodynamics or therapy. Magnetic resonance imaging (MRI) images were obtained during a breath-hold, and measurements were made off-line. RESULTS The test-retest variation showed similar measurements for volumes but wider scatter of LV mass measurements with M-mode and 2DE than 3DE. The average MRI end-diastolic volume was 172 +/- 53 ml; LV volumes were underestimated by 2DE (mean difference, -54 +/- 33; p < 0.01) but only slightly by RT-3DE (-4 +/- 29; p = 0.31). Similarly, end-systolic volume by MRI (91 +/- 53 ml) was underestimated by 2DE (mean difference, -28 +/- 28; p < 0.01) and by RT-3DE (mean difference, -3 +/- 18; p = 0.23). Ejection fraction by MRI was similar by 2DE (p = 0.76) and RT-3DE (p = 0.74). Left ventricular mass (183 +/- 50 g) was overestimated by M-mode (mean difference, 68 +/- 86 g; p < 0.01) and 2DE (16 +/- 57; p = 0.04) but not RT-3DE (0 +/- 38 g; p = 0.94). There was good inter- and intra-observer correlation between RT-3DE by two sonographers for volumes, ejection fraction, and mass. CONCLUSIONS Real-time 3DE is a feasible approach to reduce test-retest variation of LV volume, ejection fraction, and mass measurements in follow-up LV assessment in daily practice. (C) 2004 by the American College of Cardiology Foundation.
Resumo:
The polysaccharides extracted from Claviclonium ovatum were studied by a combination of compositional assays, reductive partial hydrolysis, linkage analysis, Fourier Transform infrared (FTIR) spectroscopy, and C-13, H-1, and C-13/H-1 heteronuclear multiple quantum correlation (HMQC) two-dimensional nuclear magnetic resonance (NMR) spectroscopy. The chemical and spectroscopic data showed that the alkali-modified C. ovatum polysaccharides are composed of a nearly idealized repeating unit of 6'-O-methylcarrabiose 2,4'-disulfate (the repeating unit of 6-O-methylated iota-earrageenan), although some minor components were also present. The C. ovatum galactans are the most highly methylated carrageenans reported. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
This paper describes recent advances made in computational modelling of the sugar cane liquid extraction process. The saturated fibro-porous material is rolled between circumferentially grooved rolls, which enhance frictional grip and provide a low-resistance path for liquid flow during the extraction process. Previously reported two-dimensional (2D) computational models, account for the large deformation of the porous material by solving the fully coupled governing fibre stress and fluid-flow equations using finite element techniques. While the 2D simulations provide much insight into the overarching cause-effect relationships, predictions of mechanical quantities such as roll separating force and particularly torque as a function of roll speed and degree of compression are not satisfactory for industrial use. It is considered that the unsatisfactory response in roll torque prediction may be due to the stress levels that exist between the groove tips and roots which have been largely neglected in the geometrically simplified 2D model. This paper gives results for both two- and three-dimensional finite element models and highlights their strengths and weaknesses in predicting key milling parameters. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Full-field Fourier-domain optical coherence tomography (3F-OCT) is a full-field version of spectral domain/swept source optical coherence tomography. A set of two-dimensional Fourier holograms is recorded at discrete wavenumbers spanning the swept source tuning range. The resultant three-dimensional data cube contains comprehensive information on the three-dimensional spatial properties of the sample, including its morphological layout and optical scatter. The morphological layout can be reconstructed in software via three-dimensional discrete Fourier transformation. The spatial resolution of the 3F-OCT reconstructed image, however, is degraded due to the presence of a phase cross-term, whose origin and effects are addressed in this paper. We present a theoretical and experimental study of the imaging performance of 3F-OCT, with particular emphasis on elimination of the deleterious effects of the phase cross-term.
Resumo:
GCMC simulations are applied to the adsorption of sub-critical ammonia on graphitized carbon black at 240 K. The carbon black was modelled both with and without carbonyl functional groups. Large differences are seen between the amount adsorbed for different carbonyl configurations at low pressure (P < 10kPa). Once a single layer is formed on the carbon black, the adsorption behaviour is similar between the model surfaces with and without functional groups. Simulation isotherms are qualitatively similar to the few experimental isotherms available in the literature for ammonia on highly graphitized carbon black. The mode of adsorption up to monolayer coverage is exhaustively shown to be two-dimensional clustering using various techniques. A comparison between experiment and simulation isosteric heats shows that a surface without functional groups cannot reproduce the experimental isosteric heats of adsorption, even comparing with the experimental results of carbon black heat treated at 3373 K. The addition of carbonyls produces isosteric heats with similar features to those in the literature if the separation between the carbonyls is small.
Resumo:
We have undertaken two-dimensional gel electrophoresis proteomic profiling on a series of cell lines with different recombinant antibody production rates. Due to the nature of gel-based experiments not all protein spots are detected across all samples in an experiment, and hence datasets are invariably incomplete. New approaches are therefore required for the analysis of such graduated datasets. We approached this problem in two ways. Firstly, we applied a missing value imputation technique to calculate missing data points. Secondly, we combined a singular value decomposition based hierarchical clustering with the expression variability test to identify protein spots whose expression correlates with increased antibody production. The results have shown that while imputation of missing data was a useful method to improve the statistical analysis of such data sets, this was of limited use in differentiating between the samples investigated, and highlighted a small number of candidate proteins for further investigation. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Full-field Fourier-domain optical coherence tomography (3F-OCT) is a full-field version of spectraldomain/swept-source optical coherence tomography. A set of two-dimensional Fourier holograms is recorded at discrete wavenumbers spanning the swept-source tuning range. The resultant three-dimensional data cube contains comprehensive information on the three-dimensional morphological layout of the sample that can be reconstructed in software via three-dimensional discrete Fourier-transform. This method of recording of the OCT signal confers signal-to-noise ratio improvement in comparison with "flying-spot" time-domain OCT. The spatial resolution of the 3F-OCT reconstructed image, however, is degraded due to the presence of a phase cross-term, whose origin and effects are addressed in this paper. We present theoretical and experimental study of imaging performance of 3F-OCT, with particular emphasis on elimination of the deleterious effects of the phase cross-term.
Resumo:
In this thesis we study at perturbative level correlation functions of Wilson loops (and local operators) and their relations to localization, integrability and other quantities of interest as the cusp anomalous dimension and the Bremsstrahlung function. First of all we consider a general class of 1/8 BPS Wilson loops and chiral primaries in N=4 Super Yang-Mills theory. We perform explicit two-loop computations, for some particular but still rather general configuration, that confirm the elegant results expected from localization procedure. We find notably full consistency with the multi-matrix model averages, obtained from 2D Yang-Mills theory on the sphere, when interacting diagrams do not cancel and contribute non-trivially to the final answer. We also discuss the near BPS expansion of the generalized cusp anomalous dimension with L units of R-charge. Integrability provides an exact solution, obtained by solving a general TBA equation in the appropriate limit: we propose here an alternative method based on supersymmetric localization. The basic idea is to relate the computation to the vacuum expectation value of certain 1/8 BPS Wilson loops with local operator insertions along the contour. Also these observables localize on a two-dimensional gauge theory on S^2, opening the possibility of exact calculations. As a test of our proposal, we reproduce the leading Luscher correction at weak coupling to the generalized cusp anomalous dimension. This result is also checked against a genuine Feynman diagram approach in N=4 super Yang-Mills theory. Finally we study the cusp anomalous dimension in N=6 ABJ(M) theory, identifying a scaling limit in which the ladder diagrams dominate. The resummation is encoded into a Bethe-Salpeter equation that is mapped to a Schroedinger problem, exactly solvable due to the surprising supersymmetry of the effective Hamiltonian. In the ABJ case the solution implies the diagonalization of the U(N) and U(M) building blocks, suggesting the existence of two independent cusp anomalous dimensions and an unexpected exponentation structure for the related Wilson loops.
Resumo:
Alguma forma de atenção está continuamente presente na atividade consciente humana, trazendo implicações e interesses tanto de cunho clínico quanto para a Psicologia da Saúde. A atenção é entendida como um estado seletivo, intensivo e dirigido da percepção. Dentro do contexto esportivo a muito da atenção para ser explorada. O objetivo neste trabalho foi testar a atenção de goleiros de futebol de campo através de duas tarefas experimentais. Nossas hipóteses foram que prática esportiva, especificamente em goleiros, e em função do seu treinamento, melhora seu desempenho em tarefas dissociativas do contexto peculiar ao esporte. E ainda; havendo melhora no desempenho, se é devida a componente perceptivo de discriminação, ao alocamento temporal de atenção, ou à sustentação da mesma por períodos prolongados, isto é, uma maior capacidade de concentração ou menos fadigabilidade. Comparamos 27 goleiros de futebol de campo, com idades entre 15 e 27 anos; separados por tempo de treino. Utilizamos neste estudo um programa comercial de computador, configurado para a criação de testes de atenção (Stim, Neurosoft. Inc); que controla todos os aspectos da tarefa. Correlacionamos tempo de reação e porcentagem de acertos com duração do treinamento dos goleiros em meses (e com a idade). Dividimos o grupo de goleiros em dois subgrupos, pela mediana de tempo de treinamento. Apesar da alta correlação entre tempo de treinamento e idade, inevitavelmente em nossa amostra, não houve correlação significativa entre idade e desempenho em ambas as tarefas. A correlação entre desempenho e tempo de treinamento foi altamente significativa na tarefa I. Não verificamos a correlação entre desempenho e tempo de treinamento na tarefa II, apesar da correlação significativa entre desempenhos nas duas tarefas. Foram feitas análises de correlações entre tempo de treinamento e desempenho nas tarefas separadas por blocos. Na tarefa I, a correlação entre tempo de treino e desempenho em cada bloco foi sempre significativa; tanto em teste paramétrico quanto em teste não paramétrico. Já na tarefa II não houve correlação significativa em tempo de treinamento e desempenho em qualquer dos blocos. Na análise categórica, ou seja, dos grupos divididos em dois subgrupos pela mediana de tempo de treinamento; a diferença de desempenho entre os subgrupos foi significativa apenas na tarefa I, no total de acertos (T- test de amostras independentes; F=4.36, p=0.037) e em acertos nos últimos dois blocos (bloco 3 p=0.048; bloco 4 p=0.026). Com o tempo de treinamento, a melhora no que diferenciar e o aumento na condição da fadigabilidade, tende a refinar e a diminuir. A prática esportiva pode de fato melhorar a capacidade perceptiva e a sustentação da atenção, que é à base da disciplina humana para realização de qualquer tarefa. Conseqüentemente, uma melhora afetiva e somática, além disso, uma melhora cognitiva e intelectual traz consigo uma aplicabilidade real na qualidade de vida das pessoas
Resumo:
Proteomics, the analysis of expressed proteins, has been an important developing area of research for the past two decades [Anderson, NG, Anderson, NL. Twenty years of two-dimensional electrophoresis: past, present and future. Electrophoresis 1996;17:443-53]. Advances in technology have led to a rapid increase in applications to a wide range of samples; from initial experiments using cell lines, more complex tissues and biological fluids are now being assessed to establish changes in protein expression. A primary aim of clinical proteomics is the identification of biomarkers for diagnosis and therapeutic intervention of disease, by comparing the proteomic profiles of control and disease, and differing physiological states. This expansion into clinical samples has not been without difficulties owing to the complexity and dynamic range in plasma and human tissues including tissue biopsies. The most widely used techniques for analysis of clinical samples are surface-enhanced laser desorption/ionisation mass spectrometry (SELDI-MS) and 2-dimensional gel electrophoresis (2-DE) coupled to matrix-assisted laser desorption ionisation [Person, MD, Monks, TJ, Lau, SS. An integrated approach to identifying chemically induced posttranslational modifications using comparative MALDI-MS and targeted HPLC-ESI-MS/MS. Chem. Res. Toxicol. 2003;16:598-608]-mass spectroscopy (MALDI-MS). This review aims to summarise the findings of studies that have used proteomic research methods to analyse samples from clinical studies and to assess the impact that proteomic techniques have had in assessing clinical samples. © 2004 The Canadian Society of Clinical Chemists. All rights reserved.
Resumo:
This thesis is concerned with the measurement of the characteristics of nonlinear systems by crosscorrelation, using pseudorandom input signals based on m sequences. The systems are characterised by Volterra series, and analytical expressions relating the rth order Volterra kernel to r-dimensional crosscorrelation measurements are derived. It is shown that the two-dimensional crosscorrelation measurements are related to the corresponding second order kernel values by a set of equations which may be structured into a number of independent subsets. The m sequence properties determine how the maximum order of the subsets for off-diagonal values is related to the upper bound of the arguments for nonzero kernel values. The upper bound of the arguments is used as a performance index, and the performance of antisymmetric pseudorandom binary, ternary and quinary signals is investigated. The performance indices obtained above are small in relation to the periods of the corresponding signals. To achieve higher performance with ternary signals, a method is proposed for combining the estimates of the second order kernel values so that the effects of some of the undesirable nonzero values in the fourth order autocorrelation function of the input signal are removed. The identification of the dynamics of two-input, single-output systems with multiplicative nonlinearity is investigated. It is shown that the characteristics of such a system may be determined by crosscorrelation experiments using phase-shifted versions of a common signal as inputs. The effects of nonlinearities on the estimates of system weighting functions obtained by crosscorrelation are also investigated. Results obtained by correlation testing of an industrial process are presented, and the differences between theoretical and experimental results discussed for this case;
Resumo:
Grafted GMA on EPR samples were prepared in a Thermo-Haake internal mixer by free radical melt grafting reactions in the absence (conventional system; EPR-g-GMA(CONV)) and presence of the reactive comonomer divinyl benzene, DVB (EPR-g-GMA(DVB)). The GMA-homopolymer (poly-GMA), a major side reaction product in the conventional system, was almost completely absent in the DVB-containing system, the latter also resulted in a much higher level of GMA grafting. A comprehensive microstructure analysis of the formed poly-GMA was performed based on one-dimensional H-1 and C-13 NMR spectroscopy and the complete spectral assignments were supported by two-dimensional NMR techniques based on long range two and three bond order carbon-proton couplings from HMBC (Heteronuclear Multiple Bond Coherence) and that of one bond carbon-proton couplings from HSQC (Heteronuclear Single Quantum Coherence), as well as the use of Distortionless Enhancement by Polarization Transfer (DEPT) NMR spectroscopy. The unambiguous analysis of the stereochemical configuration of poly-GMA was further used to help understand the microstructures of the GMA-grafts obtained in the two different free radical melt grafting reactions, the conventional and comonomer-containing systems. In the grafted GMA, in the conventional system (EPR-g-GMA(CONV)), the methylene protons of the GMA were found to be sensitive to tetrad configurational sequences and the results showed that 56% of the GMA sequence in the graft is in atactic configuration and 42% is in syndiotactic configuration whereas the poly-GMA was predominantly syndiotactic. The differences in the microstructures of the graft in the conventional EPR-g-GMA(CONV) and the DVB-containing (EPR-g-GMA(DVB)) systems is also reported (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Electrical and thermal transport properties of the carbon nanotube bulk material compacted by spark plasma sintering have been investigated. The electrical conductivity of the as-prepared sample shows a lnT dependence from 4 to 50 K, after which the conductivity begins to increase approximately linearly with temperature. A magnetic field applied perpendicularly to the sample increases the electrical conductivity in the range of 0-8T at all testing temperatures, indicating that the sample possesses the two-dimensional weak localization at lower temperatures (?50 K), while behaviors like a semimetal at higher temperatures (?50 K). This material acts like a uniform compact consisting of randomly distributed two dimensional graphene layers. For the same material, the thermal conductivity is found to decrease almost linearly with decreasing temperature, similar to that of a single multi-walled carbon nanotube. Magnetic fields applied perpendicularly to the sample cause the thermal conductivity to decrease significantly, but the influence of the magnetic fields becomes weak when temperature increases.