931 resultados para STATIONARY-POINTS
Resumo:
Integrated Ocean Drilling Program (IODP) Site U1314 of the North Atlantic is a critical sedimentary archive record of subpolar deep water from the southern Gardar Drift for which we derived an age model of orbital resolution for the last 1.8 Ma. This chronology combined with high-resolution (cm scale) X-ray fluorescence core scanning measurements of major elements allows tracking changes in terrigenous provenance during the last 1.1 Ma. Low Potassium to Titanium (K/Ti) ratios reflect enhanced transport of basalt-derived titanomagnetites during warm climate intervals, while high K/Ti ratios indicate a dominance of acidic sediment sources typical for glacial and stadial events. Changes in K/Ti and magnetic concentration at Site 1314 are coeval with fluctuations in smectite content and grain size data from nearby piston cores, suggesting that the provenance changes are mainly controlled by variable flow of the Iceland-Scotland Overflow Water, an important branch of North Atlantic Deep Water. Furthermore, K/Ti variations on orbital time scales show a striking similarity to the deep sea d13C record from ODP Site 607. Pervasive features of the K/Ti time series during and after the Mid-Pleistocene Transition are suborbital changes similar to Dansgaard/Oeschger and Bond oscillations that appear to be strongly amplified during ice growth phases when global benthic d18O was within the range of ~4.1-4.6 per mil. The strong increase in variability of sediment provenance and subsequently deep hydrography at benthic d18O values below ~4.1 suggests that the extent of glaciations and, therefore, sea level corresponding to this value constitutes an important physical threshold that was persistent at least for the last 1.1 Ma.
Resumo:
Multibeam data were measured during R/V SONNE cruise SO202 (INOPEX) along track lines of 6938 NM total length in the North Pacific and Bering Sea during transits and stationary work. Starting from Hokkaido (Japan) data were achieved east of the Kuril-Kamchatka Trench and south of the Aleutian Trench. The track crosses the Bowers Ridge, the continental margin of Alaska and the Umnak Plateau in the Bering Sea. Further data were gained in the North Pacific in the area of the Patton Seamounts, Gibson Seamount, Hess Rise and Shatsky Rise. The multibeam sonar system Simrad EM 120 from Kongsberg was operated using 191 beams and an aperture angle of 90° to 140° due to particular conditions. The refraction correction was achieved utilizing 6 CTD profiles measured during the cruise and one from cruise SO201. The quality of data might be reduced during bad weather periods. The dataset contains raw data that are not processed and thus may contain errors and blunders in depth and position.
Resumo:
Quantifying the spatial and temporal sea surface temperature (SST) and salinity changes of the Indo-Pacific Warm Pool is essential to understand the role of this region in connection with abrupt climate changes particularly during the last deglaciation. In this study we reconstruct SST and seawater d18O of the tropical eastern Indian Ocean for the past 40,000 years from two sediment cores (GeoB 10029-4, 1°30'S, 100°08'E, and GeoB 10038-4, 5°56'S, 103°15'E) retrieved offshore Sumatra. Our results show that annual mean SSTs increased about 2-3 °C at 19,000 years ago and exhibited southern hemisphere-like timing and pattern during the last deglaciation. Our SST records together with other Mg/Ca-based SST reconstructions around Indonesia do not track the monsoon variation since the last glacial period, as recorded by terrestrial monsoon archives. However, the spatial SST heterogeneity might be a result of changing monsoon intensity that shifts either the annual mean SSTs or the seasonality of G. ruber towards the warmer or the cooler season at different locations. Seawater d18O reconstructions north of the equator suggest fresher surface conditions during the last glacial and track the northern high-latitude climate change during the last deglaciation. In contrast, seawater ?18O records south of the equator do not show a significant difference between the last glacial period and the Holocene, and lack Bølling-Allerød and Younger Dryas periods suggestive of additional controls on annual mean surface hydrology in this part of the Indo-Pacific Warm Pool.
Resumo:
Age-progressive, linear seamount chains in the northeast Pacific appear to have formed as the Pacific plate passed over a set of stationary hotspots; however, some anomalously young ages and the lack of an "enriched" isotopic signature in basalts from the seamounts do not fit the standard hotspot model. For example, published ages (28-30 Ma) for basalts dredged from the Patton-Murray seamount platform in the Gulf of Alaska are 2-4 m.y. younger than the time when the platform was above the Cobb hotspot. However, the lowermost basalt recovered by ocean drilling on Patton-Murray yielded a 40Ar-39Ar age of 33 Ma. This age exactly coincides with the time when the seamount platform was above the Cobb hotspot, consistent with a stationary, long-lived mantle plume. A 27 Ma alkalic basalt flow recovered 8 m above the 33 Ma basalt is similar in age and composition to the previously dredged basalts, and may be the alkalic capping phase typical of many hotspot volcanoes. A 17 Ma tholeiitic basalt sill recovered 5 m above the 27 Ma basalt was emplaced long after the seamount platform moved away from the hotspot, and may be associated with a period of intraplate extension. Anomalously young phases of volcanism on this and other hotspot seamounts suggest that they can be volcanically rejuvenated by nonhotspot causes, but this rejuvenation does not rule out the hotspot model as an explanation for the initial creation of the seamount platform. The lack of an "enriched" isotopic signature in any of these basalts shows that enriched compositions are not necessary characteristics of plume-related basalts. The isotopic compositions of the lower basalts are slightly more depleted than the 0-9 Ma products of the Cobb hotspot, despite the fact that the hotspot was closer to a spreading ridge at 0-9 Ma. It appears that this hotspot, like several others, has become more enriched with time.
Resumo:
The fine-grained sediments of the Cariaco Basin, Venezuela, of the last 130 ky, whose deposition history is well characterized, were analyzed geochemically in order to test the validity of sediment bulk geochemistry as an indicator of detrital provenance. Several binary and ternary diagrams as well as the chemical index of alteration (CIA) were tested for their capacity to discriminate the poorly contrasted detrital sources to the Cariaco Basin, and to describe the temporal evolution of the contributions of these different sources. Most of the diagrams tested did not allow a good discrimination of sources or, when sources were well discriminated, did not allow an interpretation of the temporal variations consistent with the known history. A relatively good discrimination of sources and a consistent interpretation of temporal variations were however obtained using Hf vs. Th and La/Yb vs. Gd/Yb binary diagrams, as well as Ti-Zr-Th, Ti-Zr-La, and Lu-Hf-Th ternary diagrams. Compared to the previous studies of the detrital content of the Cariaco Basin sediments, the geochemical approach permitted the recognition of a sediment contribution eroded from the Unare platform and Gulf of Cariaco during rapid sea level oscillations, and the contribution of Saharan eolian particles during the Younger Dryas-Preboreal and MIS6-5 transition. The choice of plotted elements was determined after considering carrier minerals, so that different elements may be informative in different sedimentary contexts. Overall, mineral sorting during transport appears as a major limit to quantitative estimation of the different contributions. In particular mineral sorting leads to the selective enrichment of elements associated with clays (Al, Rb, Th and LREE) in sediments deposited in the basin. Unless the geochemical effect of mineral sorting can be measured, it appears that quantitative provenance analysis should be performed on fractions of similar grain size instead of bulk sediment.
Resumo:
The Paleocene - Eocene thermal maximum (PETM) is one of the best known examples of a transient climate perturbation, associated with a brief, but intense, interval of global warming and a massive perturbation of the global carbon cycle from injection of isotopically light carbon into the ocean-atmosphere system. One key to quantifying the mass of carbon released, identifying the source(s), and understanding the ultimate fate of this carbon is to develop high-resolution age models. Two independent strategies have been employed, cycle stratigraphy and analysis of extraterrestrial Helium (HeET), both of which were first tested on Ocean Drilling Program (ODP) Site 690. Both methods are in agreement for the onset of the PETM and initial recovery, or the clay layer ("main body"), but seem to differ in the final recovery phase of the event above the clay layer, where the carbonate contents rise and carbon isotope values return toward background values. Here we present a state-of-the-art age model for the PETM derived from a new orbital chronology developed with cycle stratigraphic records from sites drilled during ODP Leg 208 (Walvis Ridge, Southeastern Atlantic) integrated with published records from Site 690 (Weddell Sea, Southern Ocean, ODP Leg 113). During Leg 208, five Paleocene - Eocene (P-E) boundary sections (Sites 1262 to 1267) were recovered in multiple holes over a depth transect of more than 2200 m at the Walvis Ridge yielding the first stratigraphically complete P-E deep-sea sequence with moderate to relatively high sedimentation rates (1 to 3 cm/kyr). A detailed chronology was developed with non-destructive X-ray fluorescence (XRF) core scanning records on the scale of precession cycles, with a total duration of the PETM now estimated to be ~ 170 kyr. The revised cycle stratigraphic record confirms original estimates for the duration of the onset and initial recovery, but suggests a new duration for the final recovery that is intermediate to the previous estimates by cycle stratigraphy and HeET.
Resumo:
Variability of total alkalinity in sea ice of the high-latitudinal Arctic from November 2005 to May 2006 is considered. For the bulk of one- and two-year sea ice, alkalinity dependence on salinity is described as TA = k x Sal, where k is salinity/alkalinity ratio in under-ice water. The given relationship is valid within a wide range of salinity from 0.1 psu in desalinated fraction of two-year ice to 36 psu in snow on the young ice surface. Geochemically significant deviations from the relationship noted were observed exclusively in snow and the upper layer of one-year ice. In the upper layer of one-year ice, deficiency of alkalinity is observed ( delta TA ~= -0.07 mEq/kg, or -15%). In snow on the surface of the one-year ice, alkalinity excess is formed under desalination ( delta TA is as high as 1.3 mEq/kg, or 380%). Deviations registered are caused by possibility of carbonate precipitation in form of CaCO3 x 6H2O under seawater freezing. It is shown that ice formation and the following melting might cause losses of atmospheric CO2 of up to 3 x 10**12 gC/year.
Resumo:
Multiple copies of Cretaceous black shales extending from the early Cenomanian to the end of the Santonian were recovered at five sites on Demerara Rise during Leg 207 of the Ocean Drilling Program. These sediments are primarily composed of laminated organic-rich claystones interbedded with coarser, lightly laminated foraminferal-bearing packstones and wackestones. The black shales represent the local expression of widespread organic-rich sedimentation in the Atlantic during the mid-Cretaceous. However, incomplete recovery prevented construction of continuous composite sections, resulting in uncertainties concerning the correct stratigraphic placement of individual cores. By combining high-resolution measurements of bulk density collected shipboard on the multisensor track with continuous downhole measurements of formation resistivity using the Formation MicroScanner, an equivalent logging depth scale was constructed for black shales recovered from Sites 1258, 1260, and 1261. The integrated depths approach centimeter-scale resolution and are supported by comparisons of coarser resolution natural gamma ray emissions collected on cores and through downhole logging operations. The new depths highlight the extent of both intra- and intercore gaps and provide an opportunity to further constrain temporal and spatial paleoceanographic changes captured in proxy records from these sediments.