975 resultados para STARS: FUNDAMENTAL PARAMETERS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, a method to retrieve the source finiteness, depth of faulting, and the mechanisms of large earthquakes from long-period surface waves is developed and applied to several recent large events.

In Chapter 1, source finiteness parameters of eleven large earthquakes were determined from long-period Rayleigh waves recorded at IDA and GDSN stations. The basic data set is the seismic spectra of periods from 150 to 300 sec. Two simple models of source finiteness are studied. The first model is a point source with finite duration. In the determination of the duration or source-process times, we used Furumoto's phase method and a linear inversion method, in which we simultaneously inverted the spectra and determined the source-process time that minimizes the error in the inversion. These two methods yielded consistent results. The second model is the finite fault model. Source finiteness of large shallow earthquakes with rupture on a fault plane with a large aspect ratio was modeled with the source-finiteness function introduced by Ben-Menahem. The spectra were inverted to find the extent and direction of the rupture of the earthquake that minimize the error in the inversion. This method is applied to the 1977 Sumbawa, Indonesia, 1979 Colombia-Ecuador, 1983 Akita-Oki, Japan, 1985 Valparaiso, Chile, and 1985 Michoacan, Mexico earthquakes. The method yielded results consistent with the rupture extent inferred from the aftershock area of these earthquakes.

In Chapter 2, the depths and source mechanisms of nine large shallow earthquakes were determined. We inverted the data set of complex source spectra for a moment tensor (linear) or a double couple (nonlinear). By solving a least-squares problem, we obtained the centroid depth or the extent of the distributed source for each earthquake. The depths and source mechanisms of large shallow earthquakes determined from long-period Rayleigh waves depend on the models of source finiteness, wave propagation, and the excitation. We tested various models of the source finiteness, Q, the group velocity, and the excitation in the determination of earthquake depths.

The depth estimates obtained using the Q model of Dziewonski and Steim (1982) and the excitation functions computed for the average ocean model of Regan and Anderson (1984) are considered most reasonable. Dziewonski and Steim's Q model represents a good global average of Q determined over a period range of the Rayleigh waves used in this study. Since most of the earthquakes studied here occurred in subduction zones Regan and Anderson's average ocean model is considered most appropriate.

Our depth estimates are in general consistent with the Harvard CMT solutions. The centroid depths and their 90 % confidence intervals (numbers in the parentheses) determined by the Student's t test are: Colombia-Ecuador earthquake (12 December 1979), d = 11 km, (9, 24) km; Santa Cruz Is. earthquake (17 July 1980), d = 36 km, (18, 46) km; Samoa earthquake (1 September 1981), d = 15 km, (9, 26) km; Playa Azul, Mexico earthquake (25 October 1981), d = 41 km, (28, 49) km; El Salvador earthquake (19 June 1982), d = 49 km, (41, 55) km; New Ireland earthquake (18 March 1983), d = 75 km, (72, 79) km; Chagos Bank earthquake (30 November 1983), d = 31 km, (16, 41) km; Valparaiso, Chile earthquake (3 March 1985), d = 44 km, (15, 54) km; Michoacan, Mexico earthquake (19 September 1985), d = 24 km, (12, 34) km.

In Chapter 3, the vertical extent of faulting of the 1983 Akita-Oki, and 1977 Sumbawa, Indonesia earthquakes are determined from fundamental and overtone Rayleigh waves. Using fundamental Rayleigh waves, the depths are determined from the moment tensor inversion and fault inversion. The observed overtone Rayleigh waves are compared to the synthetic overtone seismograms to estimate the depth of faulting of these earthquakes. The depths obtained from overtone Rayleigh waves are consistent with the depths determined from fundamental Rayleigh waves for the two earthquakes. Appendix B gives the observed seismograms of fundamental and overtone Rayleigh waves for eleven large earthquakes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract. A low power arcjet-thruster of 1 kW-class with gas mixture of H2-N2 or pure argon as the propellant is fired at a chamber pressure about 10 Pa. The nozzle temperature is detected with an infrared pyrometer; a plate set perpendicular to the plume axis and connected to a force sensor is used to measure the thrust; a probe with a tapered head is used for measuring the impact pressure in the plume flow; and a double-electrostatic probe system is applied to evaluate the electron temperature. Results indicate that the high nozzle temperature could adversely affect the conversion from enthalpy to kinetic energy. The plume flow deviates evidently from the LTE condition, and the rarefied-gas dynamic effect should be considered under the high temperature and low-pressure condition in analyzing the experimental phenomena.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The physico-chemical parameters of the surface water of Shiroro Lake and its major tributaries at their entry point to the reservoir were assessed over a period of eighteen months. As in other African inland water bodies there were seasonal variations in the parameters measured. The hydrological regime of the lake, precipitation chemistry, bedrock chemistry and hydro-electric power generation influence and determine the inputs of dissolved organic carbon, nutrient levels and water quality of the lake. The added nutrients to the lake by means of the major tributary rivers and inundation of surrounding areas also influence the water quality of the lake. The wet season mean values for water and air temperature were significantly (P <0.05) higher than dry season mean values in all stations. However, for pH, Dissolved oxygen and Phosphate-phosphorus the dry season mean values were higher than wet season mean values

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta es una colección de 10 vídeos tutoriales que pueden ser empleados como material educativo en los cursos de fonética básica en el ámbito universitario. Los vídeos 1-3 tratan aspectos relacionados con la grabación: el tipo de micrófonos que se emplean, las clases de espacios en las que se suelen llevar a cabo la captura de señales de audio y las grabadoras que se suelen emplear. El vídeo 4 explora técnicas de captura y observación de datos de flujo y presión en fonética aerodinámica. Los vídeos 5-10 presentan información sobre los principales usos que se le brindan al programa Praat (Boersma y Weenink, 2014) en los estudios actuales de fonética acústica, desde la clase de información sobre modos de articulación de las consonantes que se puede identificar en oscilogramas hasta la creación de señales sonoras sintetizadas por medio de unos procedimientos que tiene el programa para tal propósito, los cuales son susceptibles de ser empleados en experimentos de percepción auditiva.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Granular crystals are compact periodic assemblies of elastic particles in Hertzian contact whose dynamic response can be tuned from strongly nonlinear to linear by the addition of a static precompression force. This unique feature allows for a wide range of studies that include the investigation of new fundamental nonlinear phenomena in discrete systems such as solitary waves, shock waves, discrete breathers and other defect modes. In the absence of precompression, a particularly interesting property of these systems is their ability to support the formation and propagation of spatially localized soliton-like waves with highly tunable properties. The wealth of parameters one can modify (particle size, geometry and material properties, periodicity of the crystal, presence of a static force, type of excitation, etc.) makes them ideal candidates for the design of new materials for practical applications. This thesis describes several ways to optimally control and tailor the propagation of stress waves in granular crystals through the use of heterogeneities (interstitial defect particles and material heterogeneities) in otherwise perfectly ordered systems. We focus on uncompressed two-dimensional granular crystals with interstitial spherical intruders and composite hexagonal packings and study their dynamic response using a combination of experimental, numerical and analytical techniques. We first investigate the interaction of defect particles with a solitary wave and utilize this fundamental knowledge in the optimal design of novel composite wave guides, shock or vibration absorbers obtained using gradient-based optimization methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The majority of young, low-mass stars are surrounded by optically thick accretion disks. These circumstellar disks provide large reservoirs of gas and dust that will eventually be transformed into planetary systems. Theory and observations suggest that the earliest stage toward planet formation in a protoplanetary disk is the growth of particles, from sub-micron-sized grains to centimeter- sized pebbles. Theory indicates that small interstellar grains are well coupled into the gas and are incorporated to the disk during the proto-stellar collapse. These dust particles settle toward the disk mid-plane and simultaneously grow through collisional coagulation in a very short timescale. Observationally, grain growth can be inferred by measuring the spectral energy distribution at long wavelengths, which traces the continuum dust emission spectrum and hence the dust opacity. Several observational studies have indicated that the dust component in protoplanetary disks has evolved as compared to interstellar medium dust particles, suggesting at least 4 orders of magnitude in particle- size growth. However, the limited angular resolution and poor sensitivity of previous observations has not allowed for further exploration of this astrophysical process.

As part of my thesis, I embarked in an observational program to search for evidence of radial variations in the dust properties across a protoplanetary disk, which may be indicative of grain growth. By making use of high angular resolution observations obtained with CARMA, VLA, and SMA, I searched for radial variations in the dust opacity inside protoplanetary disks. These observations span more than an order of magnitude in wavelength (from sub-millimeter to centimeter wavelengths) and attain spatial resolutions down to 20 AU. I characterized the radial distribution of the circumstellar material and constrained radial variations of the dust opacity spectral index, which may originate from particle growth in these circumstellar disks. Furthermore, I compared these observational constraints with simple physical models of grain evolution that include collisional coagulation, fragmentation, and the interaction of these grains with the gaseous disk (the radial drift problem). For the parameters explored, these observational constraints are in agreement with a population of grains limited in size by radial drift. Finally, I also discuss future endeavors with forthcoming ALMA observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

利用强激光场电离和离解分子来研究分子激发态的波包结构是强场物理的重要研究方向。利用短时指数传播子对称分割法和快速傅里叶变换技术。数值求解了一维含时Schr(oe)dinger方程,探讨了双色激光场中激光的基波和谐波强度之间的不同配比以及脉宽对线性多原子分子离子电离的影响。理论计算结果表明:基波和谐波的相对相位为π时,尽管随着激光的基波和谐波强度之间配比的变化,电离几率随原子间距变化的趋势基本保持不变,但在一定的激光基波强度下(1.2×10^13~1.2×10^15W/cm^2),激光基波强度的变化可以明显

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of physico-chemical parameters and plankton composition on fish production in ponds was investigated in six fish farms for eight weeks. The physicochemical parameters investigated were temperature=25-30 plus or minus C, transparency=0.45-0.57m, dissolved oxygen=3.0-10.9mg/l, pH=6.0-7.7, dissolved carbon dioxide=5.46-28.3mg/l, total alkalinity=44.37-80.0ppm, chemical oxygen demand=31.88-72.18mg/l and biological oxygen demand=0.66-48.34mg/l. Plankton composition varies and was made of four families of phytoplankton namely; Cyanophyceae, Chlorophyceae, Dinophyceae and Diatomida; and four families of zooplankton viz; Protozoa, Rotifera, Copepoda and Dinoflagellates. Farm 1 and 6 recorded the highest average weight of about 1.0kg and average total length of about 40.0cm for the two fish species. This study showed that fish yield was dependable on the quality and management of pond water characteristics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of physico-chemical parameters and plankton composition on fish production in ponds was investigated in six fish farms for eight weeks. The physicochemical parameters investigated were temperature=25-30 plus or minus C, transparency=0.45-0.57m, dissolved oxygen=3.0-10.9mg/l, pH=6.0-7.7, dissolved carbon dioxide=5.46-28.3mg/l, total alkalinity=44.37-80.0ppm, chemical oxygen demand=31.88-72.18mg/l and biological oxygen demand=0.66-48.34mg/l. Plankton composition varies and was made of four families of phytoplankton namely: Cyanophyceae, Chlorophyceae, Dinophyceae and Diatomida; and four families of zooplankton viz: Protozoa, Rotifera, Copepoda and Dinoflagellates. Farm 1 and 6 recorded the highest average weight of about 1.0kg and average total length of about 40.0cm for the two fish species. This study showed that fish yield was dependable on the quality and management of pond water characteristics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We experimentally observe the formation of X-waves at fundamental, third harmonic, and fifth harmonic wavelengths by infrared (central wavelength at similar to 1500 nm) femtosecond laser pulse filamentation in air. By fitting the angularly resolved spectra of the fundamental and harmonic waves using X-wave relations, we confirm that all the X-waves have nearly the same group velocity, indicating that they are locked in space and time during their propagation in filament.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, we develop an efficient collapse prediction model, the PFA (Peak Filtered Acceleration) model, for buildings subjected to different types of ground motions.

For the structural system, the PFA model covers modern steel and reinforced concrete moment-resisting frame buildings (potentially reinforced concrete shear wall buildings). For ground motions, the PFA model covers ramp-pulse-like ground motions, long-period ground motions, and short-period ground motions.

To predict whether a building will collapse in response to a given ground motion, we first extract long-period components from the ground motion using a Butterworth low-pass filter with suggested order and cutoff frequency. The order depends on the type of ground motion, and the cutoff frequency depends on the building’s natural frequency and ductility. We then compare the filtered acceleration time history with the capacity of the building. The capacity of the building is a constant for 2-dimentional buildings and a limit domain for 3-dimentional buildings. If the filtered acceleration exceeds the building’s capacity, the building is predicted to collapse. Otherwise, it is expected to survive the ground motion.

The parameters used in PFA model, which include fundamental period, global ductility and lateral capacity, can be obtained either from numerical analysis or interpolation based on the reference building system proposed in this thesis.

The PFA collapse prediction model greatly reduces computational complexity while archiving good accuracy. It is verified by FEM simulations of 13 frame building models and 150 ground motion records.

Based on the developed collapse prediction model, we propose to use PFA (Peak Filtered Acceleration) as a new ground motion intensity measure for collapse prediction. We compare PFA with traditional intensity measures PGA, PGV, PGD, and Sa in collapse prediction and find that PFA has the best performance among all the intensity measures.

We also provide a close form in term of a vector intensity measure (PGV, PGD) of the PFA collapse prediction model for practical collapse risk assessment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical microscopy is an essential tool in biological science and one of the gold standards for medical examinations. Miniaturization of microscopes can be a crucial stepping stone towards realizing compact, cost-effective and portable platforms for biomedical research and healthcare. This thesis reports on implementations of bright-field and fluorescence chip-scale microscopes for a variety of biological imaging applications. The term “chip-scale microscopy” refers to lensless imaging techniques realized in the form of mass-producible semiconductor devices, which transforms the fundamental design of optical microscopes.

Our strategy for chip-scale microscopy involves utilization of low-cost Complementary metal Oxide Semiconductor (CMOS) image sensors, computational image processing and micro-fabricated structural components. First, the sub-pixel resolving optofluidic microscope (SROFM), will be presented, which combines microfluidics and pixel super-resolution image reconstruction to perform high-throughput imaging of fluidic samples, such as blood cells. We discuss design parameters and construction of the device, as well as the resulting images and the resolution of the device, which was 0.66 µm at the highest acuity. The potential applications of SROFM for clinical diagnosis of malaria in the resource-limited settings is discussed.

Next, the implementations of ePetri, a self-imaging Petri dish platform with microscopy resolution, are presented. Here, we simply place the sample of interest on the surface of the image sensor and capture the direct shadow images under the illumination. By taking advantage of the inherent motion of the microorganisms, we achieve high resolution (~1 µm) imaging and long term culture of motile microorganisms over ultra large field-of-view (5.7 mm × 4.4 mm) in a specialized ePetri platform. We apply the pixel super-resolution reconstruction to a set of low-resolution shadow images of the microorganisms as they move across the sensing area of an image sensor chip and render an improved resolution image. We perform longitudinal study of Euglena gracilis cultured in an ePetri platform and image based analysis on the motion and morphology of the cells. The ePetri device for imaging non-motile cells are also demonstrated, by using the sweeping illumination of a light emitting diode (LED) matrix for pixel super-resolution reconstruction of sub-pixel shifted shadow images. Using this prototype device, we demonstrate the detection of waterborne parasites for the effective diagnosis of enteric parasite infection in resource-limited settings.

Then, we demonstrate the adaptation of a smartphone’s camera to function as a compact lensless microscope, which uses ambient illumination as its light source and does not require the incorporation of a dedicated light source. The method is also based on the image reconstruction with sweeping illumination technique, where the sequence of images are captured while the user is manually tilting the device around any ambient light source, such as the sun or a lamp. Image acquisition and reconstruction is performed on the device using a custom-built android application, constructing a stand-alone imaging device for field applications. We discuss the construction of the device using a commercial smartphone and demonstrate the imaging capabilities of our system.

Finally, we report on the implementation of fluorescence chip-scale microscope, based on a silo-filter structure fabricated on the pixel array of a CMOS image sensor. The extruded pixel design with metal walls between neighboring pixels successfully guides fluorescence emission through the thick absorptive filter to the photodiode layer of a pixel. Our silo-filter CMOS image sensor prototype achieves 13-µm resolution for fluorescence imaging over a wide field-of-view (4.8 mm × 4.4 mm). Here, we demonstrate bright-field and fluorescence longitudinal imaging of living cells in a compact, low-cost configuration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a study of the dynamical stability of nascent neutron stars resulting from the accretion induced collapse of rapidly rotating white dwarfs.

Chapter 2 and part of Chapter 3 study the equilibrium models for these neutron stars. They are constructed by assuming that the neutron stars have the same masses, angular momenta, and specific angular momentum distributions as the pre-collapse white dwarfs. If the pre-collapse white dwarf is rapidly rotating, the collapsed object will contain a high density central core of size about 20 km, surrounded by a massive accretion torus extending to hundreds of kilometers from the rotation axis. The ratio of the rotational kinetic energy to gravitational binding energy, β, of these neutron stars is all found to be less than 0.27.

Chapter 3 studies the dynamical stability of these neutron stars by numerically evolving the linearized hydrodynamical equations. A dynamical bar-mode instability is observed when the β of the star is greater than the critical value βd ≈ 0.25. It is expected that the unstable mode will persist until a substantial amount of angular momentum is carried away by gravitational radiation. The detectability of these sources is studied and it is estimated that LIGO II is unlikely to detect them unless the event rate is greater than 10-6/year/galaxy.

All the calculations on the structure and stability of the neutron stars in Chapters 2 and 3 are carried out using Newtonian hydrodynamics and gravity. Chapter 4 studies the relativistic effects on the structure of these neutron stars. New techniques are developed and used to construct neutron star models to the first post-Newtonian (1PN) order. The structures of the 1PN models are qualitatively similar to the corresponding Newtonian models, but the values of β are somewhat smaller. The maximum β for these 1PN neutron stars is found to be 0.24, which is 8% smaller than the Newtonian result (0.26). However, relativistic effects will also change the critical value βd. A detailed post-Newtonian stability analysis has yet to be carried out to study the relativistic effects on the dynamical stability of these neutron stars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a technique for obtaining the response of linear structural systems with parameter uncertainties subjected to either deterministic or random excitation. The parameter uncertainties are modeled as random variables or random fields, and are assumed to be time-independent. The new method is an extension of the deterministic finite element method to the space of random functions.

First, the general formulation of the method is developed, in the case where the excitation is deterministic in time. Next, the application of this formulation to systems satisfying the one-dimensional wave equation with uncertainty in their physical properties is described. A particular physical conceptualization of this equation is chosen for study, and some engineering applications are discussed in both an earthquake ground motion and a structural context.

Finally, the formulation of the new method is extended to include cases where the excitation is random in time. Application of this formulation to the random response of a primary-secondary system is described. It is found that parameter uncertainties can have a strong effect on the system response characteristics.