893 resultados para SPARSE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Locally weighted regression is a technique that predicts the response for new data items from their neighbors in the training data set, where closer data items are assigned higher weights in the prediction. However, the original method may suffer from overfitting and fail to select the relevant variables. In this paper we propose combining a regularization approach with locally weighted regression to achieve sparse models. Specifically, the lasso is a shrinkage and selection method for linear regression. We present an algorithm that embeds lasso in an iterative procedure that alternatively computes weights and performs lasso-wise regression. The algorithm is tested on three synthetic scenarios and two real data sets. Results show that the proposed method outperforms linear and local models for several kinds of scenarios

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes a preprocessing module for improving the performance of a Spanish into Spanish Sign Language (Lengua de Signos Espanola: LSE) translation system when dealing with sparse training data. This preprocessing module replaces Spanish words with associated tags. The list with Spanish words (vocabulary) and associated tags used by this module is computed automatically considering those signs that show the highest probability of being the translation of every Spanish word. This automatic tag extraction has been compared to a manual strategy achieving almost the same improvement. In this analysis, several alternatives for dealing with non-relevant words have been studied. Non-relevant words are Spanish words not assigned to any sign. The preprocessing module has been incorporated into two well-known statistical translation architectures: a phrase-based system and a Statistical Finite State Transducer (SFST). This system has been developed for a specific application domain: the renewal of Identity Documents and Driver's License. In order to evaluate the system a parallel corpus made up of 4080 Spanish sentences and their LSE translation has been used. The evaluation results revealed a significant performance improvement when including this preprocessing module. In the phrase-based system, the proposed module has given rise to an increase in BLEU (Bilingual Evaluation Understudy) from 73.8% to 81.0% and an increase in the human evaluation score from 0.64 to 0.83. In the case of SFST, BLEU increased from 70.6% to 78.4% and the human evaluation score from 0.65 to 0.82.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Instability analysis of compressible orthogonal swept leading-edge boundary layer flow was performed in the context of BiGlobal linear theory. 1, 2 An algorithm was developed exploiting the sparsity characteristics of the matrix discretizing the PDE-based eigenvalue problem. This allowed use of the MUMPS sparse linear algebra package 3 to obtain a direct solution of the linear systems associated with the Arnoldi iteration. The developed algorithm was then applied to efficiently analyze the effect of compressibility on the stability of the swept leading-edge boundary layer and obtain neutral curves of this flow as a function of the Mach number in the range 0 ≤ Ma ≤ 1. The present numerical results fully confirmed the asymptotic theory results of Theofilis et al. 4 Up to the maximum Mach number value studied, it was found that an increase of this parameter reduces the critical Reynolds number and the range of the unstable spanwise wavenumbers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present contribution discusses the development of a PSE-3D instability analysis algorithm, in which a matrix forming and storing approach is followed. Alternatively to the typically used in stability calculations spectral methods, new stable high-order finitedifference-based numerical schemes for spatial discretization 1 are employed. Attention is paid to the issue of efficiency, which is critical for the success of the overall algorithm. To this end, use is made of a parallelizable sparse matrix linear algebra package which takes advantage of the sparsity offered by the finite-difference scheme and, as expected, is shown to perform substantially more efficiently than when spectral collocation methods are used. The building blocks of the algorithm have been implemented and extensively validated, focusing on classic PSE analysis of instability on the flow-plate boundary layer, temporal and spatial BiGlobal EVP solutions (the latter necessary for the initialization of the PSE-3D), as well as standard PSE in a cylindrical coordinates using the nonparallel Batchelor vortex basic flow model, such that comparisons between PSE and PSE-3D be possible; excellent agreement is shown in all aforementioned comparisons. Finally, the linear PSE-3D instability analysis is applied to a fully three-dimensional flow composed of a counter-rotating pair of nonparallel Batchelor vortices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Global linear instability theory is concerned with the temporal or spatial development of small-amplitude perturbations superposed upon laminar steady or time-periodic threedimensional flows, which are inhomogeneous in two (and periodic in one) or all three spatial directions.1 The theory addresses flows developing in complex geometries, in which the parallel or weakly nonparallel basic flow approximation invoked by classic linear stability theory does not hold. As such, global linear theory is called to fill the gap in research into stability and transition in flows over or through complex geometries. Historically, global linear instability has been (and still is) concerned with solution of multi-dimensional eigenvalue problems; the maturing of non-modal linear instability ideas in simple parallel flows during the last decade of last century2–4 has given rise to investigation of transient growth scenarios in an ever increasing variety of complex flows. After a brief exposition of the theory, connections are sought with established approaches for structure identification in flows, such as the proper orthogonal decomposition and topology theory in the laminar regime and the open areas for future research, mainly concerning turbulent and three-dimensional flows, are highlighted. Recent results obtained in our group are reported in both the time-stepping and the matrix-forming approaches to global linear theory. In the first context, progress has been made in implementing a Jacobian-Free Newton Krylov method into a standard finite-volume aerodynamic code, such that global linear instability results may now be obtained in compressible flows of aeronautical interest. In the second context a new stable very high-order finite difference method is implemented for the spatial discretization of the operators describing the spatial BiGlobal EVP, PSE-3D and the TriGlobal EVP; combined with sparse matrix treatment, all these problems may now be solved on standard desktop computers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A fully 3D iterative image reconstruction algorithm has been developed for high-resolution PET cameras composed of pixelated scintillator crystal arrays and rotating planar detectors, based on the ordered subsets approach. The associated system matrix is precalculated with Monte Carlo methods that incorporate physical effects not included in analytical models, such as positron range effects and interaction of the incident gammas with the scintillator material. Custom Monte Carlo methodologies have been developed and optimized for modelling of system matrices for fast iterative image reconstruction adapted to specific scanner geometries, without redundant calculations. According to the methodology proposed here, only one-eighth of the voxels within two central transaxial slices need to be modelled in detail. The rest of the system matrix elements can be obtained with the aid of axial symmetries and redundancies, as well as in-plane symmetries within transaxial slices. Sparse matrix techniques for the non-zero system matrix elements are employed, allowing for fast execution of the image reconstruction process. This 3D image reconstruction scheme has been compared in terms of image quality to a 2D fast implementation of the OSEM algorithm combined with Fourier rebinning approaches. This work confirms the superiority of fully 3D OSEM in terms of spatial resolution, contrast recovery and noise reduction as compared to conventional 2D approaches based on rebinning schemes. At the same time it demonstrates that fully 3D methodologies can be efficiently applied to the image reconstruction problem for high-resolution rotational PET cameras by applying accurate pre-calculated system models and taking advantage of the system's symmetries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main purpose of a gene interaction network is to map the relationships of the genes that are out of sight when a genomic study is tackled. DNA microarrays allow the measure of gene expression of thousands of genes at the same time. These data constitute the numeric seed for the induction of the gene networks. In this paper, we propose a new approach to build gene networks by means of Bayesian classifiers, variable selection and bootstrap resampling. The interactions induced by the Bayesian classifiers are based both on the expression levels and on the phenotype information of the supervised variable. Feature selection and bootstrap resampling add reliability and robustness to the overall process removing the false positive findings. The consensus among all the induced models produces a hierarchy of dependences and, thus, of variables. Biologists can define the depth level of the model hierarchy so the set of interactions and genes involved can vary from a sparse to a dense set. Experimental results show how these networks perform well on classification tasks. The biological validation matches previous biological findings and opens new hypothesis for future studies

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pragmatism is the leading motivation of regularization. We can understand regularization as a modification of the maximum-likelihood estimator so that a reasonable answer could be given in an unstable or ill-posed situation. To mention some typical examples, this happens when fitting parametric or non-parametric models with more parameters than data or when estimating large covariance matrices. Regularization is usually used, in addition, to improve the bias-variance tradeoff of an estimation. Then, the definition of regularization is quite general, and, although the introduction of a penalty is probably the most popular type, it is just one out of multiple forms of regularization. In this dissertation, we focus on the applications of regularization for obtaining sparse or parsimonious representations, where only a subset of the inputs is used. A particular form of regularization, L1-regularization, plays a key role for reaching sparsity. Most of the contributions presented here revolve around L1-regularization, although other forms of regularization are explored (also pursuing sparsity in some sense). In addition to present a compact review of L1-regularization and its applications in statistical and machine learning, we devise methodology for regression, supervised classification and structure induction of graphical models. Within the regression paradigm, we focus on kernel smoothing learning, proposing techniques for kernel design that are suitable for high dimensional settings and sparse regression functions. We also present an application of regularized regression techniques for modeling the response of biological neurons. Supervised classification advances deal, on the one hand, with the application of regularization for obtaining a na¨ıve Bayes classifier and, on the other hand, with a novel algorithm for brain-computer interface design that uses group regularization in an efficient manner. Finally, we present a heuristic for inducing structures of Gaussian Bayesian networks using L1-regularization as a filter. El pragmatismo es la principal motivación de la regularización. Podemos entender la regularización como una modificación del estimador de máxima verosimilitud, de tal manera que se pueda dar una respuesta cuando la configuración del problema es inestable. A modo de ejemplo, podemos mencionar el ajuste de modelos paramétricos o no paramétricos cuando hay más parámetros que casos en el conjunto de datos, o la estimación de grandes matrices de covarianzas. Se suele recurrir a la regularización, además, para mejorar el compromiso sesgo-varianza en una estimación. Por tanto, la definición de regularización es muy general y, aunque la introducción de una función de penalización es probablemente el método más popular, éste es sólo uno de entre varias posibilidades. En esta tesis se ha trabajado en aplicaciones de regularización para obtener representaciones dispersas, donde sólo se usa un subconjunto de las entradas. En particular, la regularización L1 juega un papel clave en la búsqueda de dicha dispersión. La mayor parte de las contribuciones presentadas en la tesis giran alrededor de la regularización L1, aunque también se exploran otras formas de regularización (que igualmente persiguen un modelo disperso). Además de presentar una revisión de la regularización L1 y sus aplicaciones en estadística y aprendizaje de máquina, se ha desarrollado metodología para regresión, clasificación supervisada y aprendizaje de estructura en modelos gráficos. Dentro de la regresión, se ha trabajado principalmente en métodos de regresión local, proponiendo técnicas de diseño del kernel que sean adecuadas a configuraciones de alta dimensionalidad y funciones de regresión dispersas. También se presenta una aplicación de las técnicas de regresión regularizada para modelar la respuesta de neuronas reales. Los avances en clasificación supervisada tratan, por una parte, con el uso de regularización para obtener un clasificador naive Bayes y, por otra parte, con el desarrollo de un algoritmo que usa regularización por grupos de una manera eficiente y que se ha aplicado al diseño de interfaces cerebromáquina. Finalmente, se presenta una heurística para inducir la estructura de redes Bayesianas Gaussianas usando regularización L1 a modo de filtro.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At the present time almost all map libraries on the Internet are image collections generated by the digitization of early maps. This type of graphics files provides researchers with the possibility of accessing and visualizing historical cartographic information keeping in mind that this information has a degree of quality that depends upon elements such as the accuracy of the digitization process and proprietary constraints (e.g. visualization, resolution downloading options, copyright, use constraints). In most cases, access to these map libraries is useful only as a first approach and it is not possible to use those maps for scientific work due to the sparse tools available to measure, match, analyze and/or combine those resources with different kinds of cartography. This paper presents a method to enrich virtual map rooms and provide historians and other professional with a tool that let them to make the most of libraries in the digital era.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Global linear instability theory is concerned with the temporal or spatial development of small-amplitude perturbations superposed upon laminar steady or time-periodic three-dimensional flows, which are inhomogeneous in two(and periodic in one)or all three spatial directions.After a brief exposition of the theory,some recent advances are reported. First, results are presented on the implementation of a Jacobian-free Newton–Krylov time-stepping method into a standard finite-volume aerodynamic code to obtain global linear instability results in flows of industrial interest. Second, connections are sought between established and more-modern approaches for structure identification in flows, such as proper orthogonal decomposition and Koopman modes analysis (dynamic mode decomposition), and the possibility to connect solutions of the eigenvalue problem obtained by matrix formation or time-stepping with those delivered by dynamic mode decomposition, residual algorithm, and proper orthogonal decomposition analysis is highlighted in the laminar regime; turbulent and three-dimensional flows are identified as open areas for future research. Finally, a new stable very-high-order finite-difference method is implemented for the spatial discretization of the operators describing the spatial biglobal eigenvalue problem, parabolized stability equation three-dimensional analysis, and the triglobal eigenvalue problem; it is shown that, combined with sparse matrix treatment, all these problems may now be solved on standard desktop computers

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Probabilistic modeling is the de�ning characteristic of estimation of distribution algorithms (EDAs) which determines their behavior and performance in optimization. Regularization is a well-known statistical technique used for obtaining an improved model by reducing the generalization error of estimation, especially in high-dimensional problems. `1-regularization is a type of this technique with the appealing variable selection property which results in sparse model estimations. In this thesis, we study the use of regularization techniques for model learning in EDAs. Several methods for regularized model estimation in continuous domains based on a Gaussian distribution assumption are presented, and analyzed from di�erent aspects when used for optimization in a high-dimensional setting, where the population size of EDA has a logarithmic scale with respect to the number of variables. The optimization results obtained for a number of continuous problems with an increasing number of variables show that the proposed EDA based on regularized model estimation performs a more robust optimization, and is able to achieve signi�cantly better results for larger dimensions than other Gaussian-based EDAs. We also propose a method for learning a marginally factorized Gaussian Markov random �eld model using regularization techniques and a clustering algorithm. The experimental results show notable optimization performance on continuous additively decomposable problems when using this model estimation method. Our study also covers multi-objective optimization and we propose joint probabilistic modeling of variables and objectives in EDAs based on Bayesian networks, speci�cally models inspired from multi-dimensional Bayesian network classi�ers. It is shown that with this approach to modeling, two new types of relationships are encoded in the estimated models in addition to the variable relationships captured in other EDAs: objectivevariable and objective-objective relationships. An extensive experimental study shows the e�ectiveness of this approach for multi- and many-objective optimization. With the proposed joint variable-objective modeling, in addition to the Pareto set approximation, the algorithm is also able to obtain an estimation of the multi-objective problem structure. Finally, the study of multi-objective optimization based on joint probabilistic modeling is extended to noisy domains, where the noise in objective values is represented by intervals. A new version of the Pareto dominance relation for ordering the solutions in these problems, namely �-degree Pareto dominance, is introduced and its properties are analyzed. We show that the ranking methods based on this dominance relation can result in competitive performance of EDAs with respect to the quality of the approximated Pareto sets. This dominance relation is then used together with a method for joint probabilistic modeling based on `1-regularization for multi-objective feature subset selection in classi�cation, where six di�erent measures of accuracy are considered as objectives with interval values. The individual assessment of the proposed joint probabilistic modeling and solution ranking methods on datasets with small-medium dimensionality, when using two di�erent Bayesian classi�ers, shows that comparable or better Pareto sets of feature subsets are approximated in comparison to standard methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes a novel approach to phonotactic LID, where instead of using soft-counts based on phoneme lattices, we use posteriogram to obtain n-gram counts. The high-dimensional vectors of counts are reduced to low-dimensional units for which we adapted the commonly used term i-vectors. The reduction is based on multinomial subspace modeling and is designed to work in the total-variability space. The proposed technique was tested on the NIST 2009 LRE set with better results to a system based on using soft-counts (Cavg on 30s: 3.15% vs 3.43%), and with very good results when fused with an acoustic i-vector LID system (Cavg on 30s acoustic 2.4% vs 1.25%). The proposed technique is also compared with another low dimensional projection system based on PCA. In comparison with the original soft-counts, the proposed technique provides better results, reduces the problems due to sparse counts, and avoids the process of using pruning techniques when creating the lattices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este proyecto pretende documentar el proceso completo de una producción audiovisual en 3D. Para ello, se hace un recorrido por cada una de sus etapas, desde los primeros pasos de la escritura hasta que la película llega a los espectadores. Como el flujo de trabajo para realizar una película es enorme, el estudio se centra exclusivamente en las peculiaridades estereoscópicas, dejando al margen los procesos habituales de una producción convencional. El proyecto está dividido en cinco grandes bloques, centrados en cada etapa de producción. El primer capítulo es una introducción al mundo tridimensional, que sienta las bases de la percepción humana para entender cómo funcionan todas las demás etapas. Además, se hace un repaso por los distintos avances producidos en el campo estereoscópico a lo largo de la historia. El segundo capítulo se centra en la pre-producción, el primer paso para llevar a cabo cualquier proyecto audiovisual, consistente en la planificación del trabajo a realizar y la organización de los distintos elementos que serán necesarios durante el rodaje, teniendo en cuenta desde el primer momento la tercera dimensión. El tercer capítulo está dedicado a la grabación de las imágenes, centrándose principalmente en las características y configuraciones de las cámaras o rigs con los que se obtienen las dos secuencias. El cuarto capítulo aborda la percepción de la película 3D, explicando las características de los variados sistemas de visualización de las imágenes grabadas, que dan a su vez diferentes sistemas de proyección estereoscópica. El quinto y último capítulo se centra en el procesado digital de las imágenes estéreo, que permite juntar el material grabado, corregirlo o perfeccionarlo, y darle la forma adecuada de película que llega al público final. La documentación escrita en español sobre todas estas fases es algo escasa, centrándose normalmente en alguna parte concreta de la cadena, por lo que el proyecto trata también de llenar ese vacío, explicándolo de manera sencilla para hacerlo accesible y factible para toda persona interesada. ABSTRACT. This project has the intention of document the complete process of 3D audiovisual production. For that reason, we make a journey through each of its stages, from the first steps of writing until the film reaches the final viewers. Since the workflow for a film is huge, the study focuses exclusively on the stereoscopic peculiarities, leaving aside the usual processes of conventional production. The Project is divided into five major sections focused on each stage of production. The first chapter is an introduction to three-dimensional world, which lays the foundation of human perception to understand how the other stages work. In addition, we review the various advances in the stereoscopic field throughout history. The second chapter focuses on the pre-production, the first step in carrying out any audiovisual project, including the design of all the works to do and the organization of the different elements that will be needed during filming, taking into account the third dimension from the first moment. The third chapter is devoted to the image recording, focusing mainly on the features and the settings of the cameras or rigs used to obtain the two sequences. The fourth chapter deals with the 3D film perception, explaining the characteristics of the various systems used for displaying the recorded images, which, in turn, give different stereoscopic projection systems. The fifth and final chapter focuses on the digital processing of stereo images, which allows collecting all the recorded material, correcting or improving it, and giving it the proper style for a film that reaches the end consumer. The documents written in Spanish about all these phases are somewhat sparse, usually focusing on a particular part of the chain, so the project also aims to fill that gap, with simple explanations in order to make it accessible and doable for anyone interested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El objetivo de esta Tesis ha sido la consecución de simulaciones en tiempo real de vehículos industriales modelizados como sistemas multicuerpo complejos formados por sólidos rígidos. Para el desarrollo de un programa de simulación deben considerarse cuatro aspectos fundamentales: la modelización del sistema multicuerpo (tipos de coordenadas, pares ideales o impuestos mediante fuerzas), la formulación a utilizar para plantear las ecuaciones diferenciales del movimiento (coordenadas dependientes o independientes, métodos globales o topológicos, forma de imponer las ecuaciones de restricción), el método de integración numérica para resolver estas ecuaciones en el tiempo (integradores explícitos o implícitos) y finalmente los detalles de la implementación realizada (lenguaje de programación, librerías matemáticas, técnicas de paralelización). Estas cuatro etapas están interrelacionadas entre sí y todas han formado parte de este trabajo. Desde la generación de modelos de una furgoneta y de camión con semirremolque, el uso de tres formulaciones dinámicas diferentes, la integración de las ecuaciones diferenciales del movimiento mediante métodos explícitos e implícitos, hasta el uso de funciones BLAS, de técnicas de matrices sparse y la introducción de paralelización para utilizar los distintos núcleos del procesador. El trabajo presentado en esta Tesis ha sido organizado en 8 capítulos, dedicándose el primero de ellos a la Introducción. En el Capítulo 2 se presentan dos formulaciones semirrecursivas diferentes, de las cuales la primera está basada en una doble transformación de velocidades, obteniéndose las ecuaciones diferenciales del movimiento en función de las aceleraciones relativas independientes. La integración numérica de estas ecuaciones se ha realizado con el método de Runge-Kutta explícito de cuarto orden. La segunda formulación está basada en coordenadas relativas dependientes, imponiendo las restricciones por medio de penalizadores en posición y corrigiendo las velocidades y aceleraciones mediante métodos de proyección. En este segundo caso la integración de las ecuaciones del movimiento se ha llevado a cabo mediante el integrador implícito HHT (Hilber, Hughes and Taylor), perteneciente a la familia de integradores estructurales de Newmark. En el Capítulo 3 se introduce la tercera formulación utilizada en esta Tesis. En este caso las uniones entre los sólidos del sistema se ha realizado mediante uniones flexibles, lo que obliga a imponer los pares por medio de fuerzas. Este tipo de uniones impide trabajar con coordenadas relativas, por lo que la posición del sistema y el planteamiento de las ecuaciones del movimiento se ha realizado utilizando coordenadas Cartesianas y parámetros de Euler. En esta formulación global se introducen las restricciones mediante fuerzas (con un planteamiento similar al de los penalizadores) y la estabilización del proceso de integración numérica se realiza también mediante proyecciones de velocidades y aceleraciones. En el Capítulo 4 se presenta una revisión de las principales herramientas y estrategias utilizadas para aumentar la eficiencia de las implementaciones de los distintos algoritmos. En primer lugar se incluye una serie de consideraciones básicas para aumentar la eficiencia numérica de las implementaciones. A continuación se mencionan las principales características de los analizadores de códigos utilizados y también las librerías matemáticas utilizadas para resolver los problemas de álgebra lineal tanto con matrices densas como sparse. Por último se desarrolla con un cierto detalle el tema de la paralelización en los actuales procesadores de varios núcleos, describiendo para ello el patrón empleado y las características más importantes de las dos herramientas propuestas, OpenMP y las TBB de Intel. Hay que señalar que las características de los sistemas multicuerpo problemas de pequeño tamaño, frecuente uso de la recursividad, y repetición intensiva en el tiempo de los cálculos con fuerte dependencia de los resultados anteriores dificultan extraordinariamente el uso de técnicas de paralelización frente a otras áreas de la mecánica computacional, tales como por ejemplo el cálculo por elementos finitos. Basándose en los conceptos mencionados en el Capítulo 4, el Capítulo 5 está dividido en tres secciones, una para cada formulación propuesta en esta Tesis. En cada una de estas secciones se describen los detalles de cómo se han realizado las distintas implementaciones propuestas para cada algoritmo y qué herramientas se han utilizado para ello. En la primera sección se muestra el uso de librerías numéricas para matrices densas y sparse en la formulación topológica semirrecursiva basada en la doble transformación de velocidades. En la segunda se describe la utilización de paralelización mediante OpenMP y TBB en la formulación semirrecursiva con penalizadores y proyecciones. Por último, se describe el uso de técnicas de matrices sparse y paralelización en la formulación global con uniones flexibles y parámetros de Euler. El Capítulo 6 describe los resultados alcanzados mediante las formulaciones e implementaciones descritas previamente. Este capítulo comienza con una descripción de la modelización y topología de los dos vehículos estudiados. El primer modelo es un vehículo de dos ejes del tipo chasis-cabina o furgoneta, perteneciente a la gama de vehículos de carga medianos. El segundo es un vehículo de cinco ejes que responde al modelo de un camión o cabina con semirremolque, perteneciente a la categoría de vehículos industriales pesados. En este capítulo además se realiza un estudio comparativo entre las simulaciones de estos vehículos con cada una de las formulaciones utilizadas y se presentan de modo cuantitativo los efectos de las mejoras alcanzadas con las distintas estrategias propuestas en esta Tesis. Con objeto de extraer conclusiones más fácilmente y para evaluar de un modo más objetivo las mejoras introducidas en la Tesis, todos los resultados de este capítulo se han obtenido con el mismo computador, que era el top de la gama Intel Xeon en 2007, pero que hoy día está ya algo obsoleto. Por último los Capítulos 7 y 8 están dedicados a las conclusiones finales y las futuras líneas de investigación que pueden derivar del trabajo realizado en esta Tesis. Los objetivos de realizar simulaciones en tiempo real de vehículos industriales de gran complejidad han sido alcanzados con varias de las formulaciones e implementaciones desarrolladas. ABSTRACT The objective of this Dissertation has been the achievement of real time simulations of industrial vehicles modeled as complex multibody systems made up by rigid bodies. For the development of a simulation program, four main aspects must be considered: the modeling of the multibody system (types of coordinates, ideal joints or imposed by means of forces), the formulation to be used to set the differential equations of motion (dependent or independent coordinates, global or topological methods, ways to impose constraints equations), the method of numerical integration to solve these equations in time (explicit or implicit integrators) and the details of the implementation carried out (programming language, mathematical libraries, parallelization techniques). These four stages are interrelated and all of them are part of this work. They involve the generation of models for a van and a semitrailer truck, the use of three different dynamic formulations, the integration of differential equations of motion through explicit and implicit methods, the use of BLAS functions and sparse matrix techniques, and the introduction of parallelization to use the different processor cores. The work presented in this Dissertation has been structured in eight chapters, the first of them being the Introduction. In Chapter 2, two different semi-recursive formulations are shown, of which the first one is based on a double velocity transformation, thus getting the differential equations of motion as a function of the independent relative accelerations. The numerical integration of these equations has been made with the Runge-Kutta explicit method of fourth order. The second formulation is based on dependent relative coordinates, imposing the constraints by means of position penalty coefficients and correcting the velocities and accelerations by projection methods. In this second case, the integration of the motion equations has been carried out by means of the HHT implicit integrator (Hilber, Hughes and Taylor), which belongs to the Newmark structural integrators family. In Chapter 3, the third formulation used in this Dissertation is presented. In this case, the joints between the bodies of the system have been considered as flexible joints, with forces used to impose the joint conditions. This kind of union hinders to work with relative coordinates, so the position of the system bodies and the setting of the equations of motion have been carried out using Cartesian coordinates and Euler parameters. In this global formulation, constraints are introduced through forces (with a similar approach to the penalty coefficients) are presented. The stabilization of the numerical integration is carried out also by velocity and accelerations projections. In Chapter 4, a revision of the main computer tools and strategies used to increase the efficiency of the implementations of the algorithms is presented. First of all, some basic considerations to increase the numerical efficiency of the implementations are included. Then the main characteristics of the code’ analyzers used and also the mathematical libraries used to solve linear algebra problems (both with dense and sparse matrices) are mentioned. Finally, the topic of parallelization in current multicore processors is developed thoroughly. For that, the pattern used and the most important characteristics of the tools proposed, OpenMP and Intel TBB, are described. It needs to be highlighted that the characteristics of multibody systems small size problems, frequent recursion use and intensive repetition along the time of the calculation with high dependencies of the previous results complicate extraordinarily the use of parallelization techniques against other computational mechanics areas, as the finite elements computation. Based on the concepts mentioned in Chapter 4, Chapter 5 is divided into three sections, one for each formulation proposed in this Dissertation. In each one of these sections, the details of how these different proposed implementations have been made for each algorithm and which tools have been used are described. In the first section, it is shown the use of numerical libraries for dense and sparse matrices in the semirecursive topological formulation based in the double velocity transformation. In the second one, the use of parallelization by means OpenMP and TBB is depicted in the semi-recursive formulation with penalization and projections. Lastly, the use of sparse matrices and parallelization techniques is described in the global formulation with flexible joints and Euler parameters. Chapter 6 depicts the achieved results through the formulations and implementations previously described. This chapter starts with a description of the modeling and topology of the two vehicles studied. The first model is a two-axle chassis-cabin or van like vehicle, which belongs to the range of medium charge vehicles. The second one is a five-axle vehicle belonging to the truck or cabin semi-trailer model, belonging to the heavy industrial vehicles category. In this chapter, a comparative study is done between the simulations of these vehicles with each one of the formulations used and the improvements achieved are presented in a quantitative way with the different strategies proposed in this Dissertation. With the aim of deducing the conclusions more easily and to evaluate in a more objective way the improvements introduced in the Dissertation, all the results of this chapter have been obtained with the same computer, which was the top one among the Intel Xeon range in 2007, but which is rather obsolete today. Finally, Chapters 7 and 8 are dedicated to the final conclusions and the future research projects that can be derived from the work presented in this Dissertation. The objectives of doing real time simulations in high complex industrial vehicles have been achieved with the formulations and implementations developed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nuestro cerebro contiene cerca de 1014 sinapsis neuronales. Esta enorme cantidad de conexiones proporciona un entorno ideal donde distintos grupos de neuronas se sincronizan transitoriamente para provocar la aparición de funciones cognitivas, como la percepción, el aprendizaje o el pensamiento. Comprender la organización de esta compleja red cerebral en base a datos neurofisiológicos, representa uno de los desafíos más importantes y emocionantes en el campo de la neurociencia. Se han propuesto recientemente varias medidas para evaluar cómo se comunican las diferentes partes del cerebro a diversas escalas (células individuales, columnas corticales, o áreas cerebrales). Podemos clasificarlos, según su simetría, en dos grupos: por una parte, la medidas simétricas, como la correlación, la coherencia o la sincronización de fase, que evalúan la conectividad funcional (FC); mientras que las medidas asimétricas, como la causalidad de Granger o transferencia de entropía, son capaces de detectar la dirección de la interacción, lo que denominamos conectividad efectiva (EC). En la neurociencia moderna ha aumentado el interés por el estudio de las redes funcionales cerebrales, en gran medida debido a la aparición de estos nuevos algoritmos que permiten analizar la interdependencia entre señales temporales, además de la emergente teoría de redes complejas y la introducción de técnicas novedosas, como la magnetoencefalografía (MEG), para registrar datos neurofisiológicos con gran resolución. Sin embargo, nos hallamos ante un campo novedoso que presenta aun varias cuestiones metodológicas sin resolver, algunas de las cuales trataran de abordarse en esta tesis. En primer lugar, el creciente número de aproximaciones para determinar la existencia de FC/EC entre dos o más señales temporales, junto con la complejidad matemática de las herramientas de análisis, hacen deseable organizarlas todas en un paquete software intuitivo y fácil de usar. Aquí presento HERMES (http://hermes.ctb.upm.es), una toolbox en MatlabR, diseñada precisamente con este fin. Creo que esta herramienta será de gran ayuda para todos aquellos investigadores que trabajen en el campo emergente del análisis de conectividad cerebral y supondrá un gran valor para la comunidad científica. La segunda cuestión practica que se aborda es el estudio de la sensibilidad a las fuentes cerebrales profundas a través de dos tipos de sensores MEG: gradiómetros planares y magnetómetros, esta aproximación además se combina con un enfoque metodológico, utilizando dos índices de sincronización de fase: phase locking value (PLV) y phase lag index (PLI), este ultimo menos sensible a efecto la conducción volumen. Por lo tanto, se compara su comportamiento al estudiar las redes cerebrales, obteniendo que magnetómetros y PLV presentan, respectivamente, redes más densamente conectadas que gradiómetros planares y PLI, por los valores artificiales que crea el problema de la conducción de volumen. Sin embargo, cuando se trata de caracterizar redes epilépticas, el PLV ofrece mejores resultados, debido a la gran dispersión de las redes obtenidas con PLI. El análisis de redes complejas ha proporcionado nuevos conceptos que mejoran caracterización de la interacción de sistemas dinámicos. Se considera que una red está compuesta por nodos, que simbolizan sistemas, cuyas interacciones se representan por enlaces, y su comportamiento y topología puede caracterizarse por un elevado número de medidas. Existe evidencia teórica y empírica de que muchas de ellas están fuertemente correlacionadas entre sí. Por lo tanto, se ha conseguido seleccionar un pequeño grupo que caracteriza eficazmente estas redes, y condensa la información redundante. Para el análisis de redes funcionales, la selección de un umbral adecuado para decidir si un determinado valor de conectividad de la matriz de FC es significativo y debe ser incluido para un análisis posterior, se convierte en un paso crucial. En esta tesis, se han obtenido resultados más precisos al utilizar un test de subrogadas, basado en los datos, para evaluar individualmente cada uno de los enlaces, que al establecer a priori un umbral fijo para la densidad de conexiones. Finalmente, todas estas cuestiones se han aplicado al estudio de la epilepsia, caso práctico en el que se analizan las redes funcionales MEG, en estado de reposo, de dos grupos de pacientes epilépticos (generalizada idiopática y focal frontal) en comparación con sujetos control sanos. La epilepsia es uno de los trastornos neurológicos más comunes, con más de 55 millones de afectados en el mundo. Esta enfermedad se caracteriza por la predisposición a generar ataques epilépticos de actividad neuronal anormal y excesiva o bien síncrona, y por tanto, es el escenario perfecto para este tipo de análisis al tiempo que presenta un gran interés tanto desde el punto de vista clínico como de investigación. Los resultados manifiestan alteraciones especificas en la conectividad y un cambio en la topología de las redes en cerebros epilépticos, desplazando la importancia del ‘foco’ a la ‘red’, enfoque que va adquiriendo relevancia en las investigaciones recientes sobre epilepsia. ABSTRACT There are about 1014 neuronal synapses in the human brain. This huge number of connections provides the substrate for neuronal ensembles to become transiently synchronized, producing the emergence of cognitive functions such as perception, learning or thinking. Understanding the complex brain network organization on the basis of neuroimaging data represents one of the most important and exciting challenges for systems neuroscience. Several measures have been recently proposed to evaluate at various scales (single cells, cortical columns, or brain areas) how the different parts of the brain communicate. We can classify them, according to their symmetry, into two groups: symmetric measures, such as correlation, coherence or phase synchronization indexes, evaluate functional connectivity (FC); and on the other hand, the asymmetric ones, such as Granger causality or transfer entropy, are able to detect effective connectivity (EC) revealing the direction of the interaction. In modern neurosciences, the interest in functional brain networks has increased strongly with the onset of new algorithms to study interdependence between time series, the advent of modern complex network theory and the introduction of powerful techniques to record neurophysiological data, such as magnetoencephalography (MEG). However, when analyzing neurophysiological data with this approach several questions arise. In this thesis, I intend to tackle some of the practical open problems in the field. First of all, the increase in the number of time series analysis algorithms to study brain FC/EC, along with their mathematical complexity, creates the necessity of arranging them into a single, unified toolbox that allow neuroscientists, neurophysiologists and researchers from related fields to easily access and make use of them. I developed such a toolbox for this aim, it is named HERMES (http://hermes.ctb.upm.es), and encompasses several of the most common indexes for the assessment of FC and EC running for MatlabR environment. I believe that this toolbox will be very helpful to all the researchers working in the emerging field of brain connectivity analysis and will entail a great value for the scientific community. The second important practical issue tackled in this thesis is the evaluation of the sensitivity to deep brain sources of two different MEG sensors: planar gradiometers and magnetometers, in combination with the related methodological approach, using two phase synchronization indexes: phase locking value (PLV) y phase lag index (PLI), the latter one being less sensitive to volume conduction effect. Thus, I compared their performance when studying brain networks, obtaining that magnetometer sensors and PLV presented higher artificial values as compared with planar gradiometers and PLI respectively. However, when it came to characterize epileptic networks it was the PLV which gives better results, as PLI FC networks where very sparse. Complex network analysis has provided new concepts which improved characterization of interacting dynamical systems. With this background, networks could be considered composed of nodes, symbolizing systems, whose interactions with each other are represented by edges. A growing number of network measures is been applied in network analysis. However, there is theoretical and empirical evidence that many of these indexes are strongly correlated with each other. Therefore, in this thesis I reduced them to a small set, which could more efficiently characterize networks. Within this framework, selecting an appropriate threshold to decide whether a certain connectivity value of the FC matrix is significant and should be included in the network analysis becomes a crucial step, in this thesis, I used the surrogate data tests to make an individual data-driven evaluation of each of the edges significance and confirmed more accurate results than when just setting to a fixed value the density of connections. All these methodologies were applied to the study of epilepsy, analysing resting state MEG functional networks, in two groups of epileptic patients (generalized and focal epilepsy) that were compared to matching control subjects. Epilepsy is one of the most common neurological disorders, with more than 55 million people affected worldwide, characterized by its predisposition to generate epileptic seizures of abnormal excessive or synchronous neuronal activity, and thus, this scenario and analysis, present a great interest from both the clinical and the research perspective. Results revealed specific disruptions in connectivity and network topology and evidenced that networks’ topology is changed in epileptic brains, supporting the shift from ‘focus’ to ‘networks’ which is gaining importance in modern epilepsy research.