941 resultados para SOL-GEL CHEMISTRY
Resumo:
The modelling of the local structure of sol-gel derived Eu3+-based organic/inorganic hybrids is reported, based on Small-Angle X-ray Scattering (SAXS), photoluminescence and mid-infrared spectroscopy. The hybrid matrix of these organically modified silicates, classed as di-ureasils and termed U(2000) and U(600), is formed by poly( oxyethylene) (POE) chains of variable length grafted to siloxane domains by means of urea cross-linkages. Europium triflate, Eu(CF3SO3)(3), was incorporated in the two di-ureasil matrices with compositions 400 greater than or equal ton greater than or equal to 10, n is the molar ratio of ether oxygens per Eu3+. The SAXS data for undoped hybrids (n=infinity) show the presence of a well-defined peak attributed to the existence of a liquid-like spatial correlation of siloxane rich domains embedded in the polymer matrix and located at the ends of the organic segments. The obtained siloxane particle gyration radius Rg(1) is around 5 Angstrom (error within 10%), whereas the interparticle distance d is 25 +/-2 Angstrom and 40 +/-2 Angstrom, for U(600) and U(2000), respectively. For the Eu3+-based nanocomposites the formation of a two-level hierarchical local structure is discerned. The primary level is constituted by strongly spatially correlated siloxane particles of gyration radius Rg(1) (4-6 and 3-8 Angstrom, errors within 5%, for U(600())n Eu(CF3SO3)(3), 200 greater than or equal ton greater than or equal to 40, and U(2000)(n)Eu(CF3SO3)(3), 400 greater than or equal ton greater than or equal to 40, respectively) forming large clusters of gyration radius Rg(2) (approximate to 75 +/- 10 Angstrom). The local coordination of Eu3+ in both di-ureasil series is described combining the SAXS, photoluminescence and mid-infrared results. In the di-ureasils containing long polymer chains, U(2000)(n)Eu(CF3SO3)(3), the cations interact exclusively with the carbonyl oxygens atoms of the urea bridges at the siloxane-POE interface. In the hybrids containing shorter chains, U(600)(n)Eu(CF3SO3)(3) with n ranging from 200 to 60, the Eu3+ ions interact solely with the ether-type oxygens of the polymer chains. Nevertheless, in this latter family of hybrids a distinct Eu3+ local site environment involving the urea cross-linkages is detected when the europium content is increased up to n=40.
Resumo:
Pt-modified RuO2 was prepared by a sol-gel procedure on titanium substrates in the form of thin films of similar to2-mum thickness. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses showed that these films actually consist of Pt nanoparticles dispersed in RuO2 and that neither metallic Ru nor Pt-Ru alloy are present on the surface. Electrodes with different Pt:Ru nominal compositions were prepared and their electrocatalytic activity for the oxidation of methanol was investigated by potential sweeps and chronoamperometry. The results obtained show an enhancement effect for methanol oxidation that can be interpreted as associated to the formation of hydrous oxides on the RuO2 surface.
Resumo:
We report the energy-transfer mechanisms and emission quantum yield measurements of sol-gel-derived Eu3+-based nanohybrids. The matrix of these materials, classified as diureasils and termed U(2000) and U(600), includes urea cross-links between a siliceous backbone and polyether-based segments of two molecular weights, 2000 and 600, respectively. These materials are full-color emitters in which the Eu3+ (5)Do --> F-7(0-4) lines merge with the broad green-blue emission of the nanoscopic matrix's backbone. The excitation spectra show the presence of a large broad band (similar to 27000-29000 cm(-1)) undoubtedly assigned to a ligand-to-metal charge-transfer state. Emission quantum yields range from 2% to 13.0% depending on the polymer molecular weight and Eu3+ concentration. Energy transfer between the hybrid hosts and the cations arises from two different and independent processes: the charge-transfer band and energy transfer from the hybrid's emitting centers. The activation of the latter mechanisms induces a decrease in the emission quantum yields (relative to undoped nanohybrids) and permits a fine-tuning of the emission chromaticity across the Comission Internacionalle d'Eclairage diagram, e.g., (x, y) color coordinates from (0.21, 0.24) to (0.39, 0.36). Moreover, that activation depends noticeably on the ion local coordination. For the diureasils with longer polymer chains, energy transfer occurs as the Eu3+ coordination involves the carbonyl-type oxygen atoms of the urea bridges, which are located near the hybrid's host emitting centers. on the contrary, in the U(600)-based diureasils, the Eu3+ ions are coordinated to the polymer chains, and therefore, the distance between the hybrid's emitting centers and the metal ions is large enough to allow efficient energy-transfer mechanisms.
Resumo:
Strontium titanate (SrTiO3) thin films were prepared by dip-coating Si(111) single-crystal substrates in citrate solutions of ethylene glycol, considering several citric acid/ethylene glycol (CA/EG) ratios. Measurements of intrinsic viscosity indicate that increasing the amount of EG increases the precursors' polymeric chains and increases the weight loss. After deposition the substrates were dried on a hotplate (approximate to 150 degrees C); this was followed by heat treatment at temperatures ranging from 500 to 700 degrees C using heating and cooling rates of 1 degrees C min(-1). SEM and optical microscopy investigations of the sintered films obtained from different CA/EG ratios indicate that there is a critical thickness above which the films present cracks. This critical thickness for SrTiO3 films deposited on the Si(111) substrate is about 150 nm, Measurements of crack spacing as a function of film thickness indicate that the origin of cracks cannot be explained by the elastic behavior of the film but rather by the viscoelastic relaxation of the film during pyrolysis and sintering. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
Wet silica gels with similar to 1.4 x 10(-3) mol SiO2/cm(3) and similar to 90 vol.% liquid phase were prepared from the sonohydrolysis of tetraethoxysilane (TEOS) with different additions of dimethylformamide (DMF). Aerogels were obtained by CO2 supercritical extraction. The samples were studied mainly by small-angle X-ray scattering (SAXS) and nitrogen adsorption. Wet gels exhibit a mass fractal structure with fractal dimension D increasing from 2.23 to 2.35 and characteristic length xi decreasing from similar to 9.4 nm to similar to 5.1 nm, as the DMF/TEOS molar ratio is increased from 0 to 4. The supercritical process apparently eliminates some porosity, shortening the fractality domain in the mesopore region and developing an apparent surface/mass fractal (with correlated mass fractal dimension D-m similar to 2.6 and surface fractal dimension D-s similar to 2.3) in the micropore region. The fundamental role of the DMF addition on the structure of the aerogels is to diminish the porosity and the pore mean size, without, however, modify substantially the specific surface area and the average size of the silica particle of the solid network. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In this work we report the effects of incorporation of variable amounts (0.5-25%w/w) of montmorillonite in poly(oxyethylene) based materials in order to decrease the polymer crystallinity. Two different classes of materials were studied: silica-poly(oxyethylene)-montmorillonite hybrids prepared by the sol-gel route and poly(oxyethylene)-montmorillonite nanocomposites prepared by mixing the dry clay or the clay aqueous suspension into the melt poly(oxyethylene). The effects of monternorillonite loading on the poly(oxyethylene) crystallization control and on the nanostructural features were investigated by X-ray powder diffraction, small-angle X-ray scattering and differential scanning calorimetry. Experimental results show that free montmorillonite layers coexist with open aggregates and tactoids in the poly(oxyethylene)-montmorillonite nanocomposites, with different features depending on the filler proportion and preparation route. The intercalation of polymer chains in montmorillonite galleries markedly hinders the crystallization of the poly(oxyethylene) matrix. For hybrids materials the silica phase favors the exfoliation of montmorillonite tactoids, so that samples are predominantly constituted by dispersed platelets. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Transparent, flexible, and luminescent EU3+-doped siloxane-poly(ethylene glycol) (PEG) nanocomposites have been obtained by the sol-gel process. The inorganic (siloxane) and organic PEG phases are usually linked by weak bonds (hydrogen bonds or van der Waals forces), and small-angle X-ray scattering (SAXS) measurements suggest that the structure of these materials consists of fractal siloxane aggregates embedded in the PEG matrix. For low Eu3+ contents, n = 300 and n = 80, the aggregates are small and isolated and their fractal dimensions are 2.1 and 1.7, respectively. These values are close to those expected for gelation mechanisms consisting of reaction-limited cluster-cluster aggregation (RLCCA) and diffusion-limited cluster-cluster aggregation (DLCCA). For high Eu3+ content, SAYS results are consistent with a two-level structure: a primary level of siloxane aggregates and a second level, much larger, formed by the coalescence of the primary ones. The observed increase in the glass transition temperature for increasing Eu3+ content is consistent with the structural model derived from SAXS measurements. Extended X-ray absorption fine structure (EXAFS) and luminescence spectroscopy measurements indicate that under the experimental conditions utilized here Eu3+ ions do not strongly interact with the polymeric phase.
Resumo:
The crystallographic and magnetic structure of sintered, polycrystalline samples of zinc-antimony spinel, Zn7-xNixSb2O12, have been investigated. The samples were prepared by the modified polymeric precursors method. The magnetic contributions of the Ni2+ ions distributed in three non-equivalent crystallographic sites were investigated, revealing the occurrence of different magnetic regimes. A hysteresis response in the magnetic susceptibility indicates a spin-glasslike behavior at low temperatures. (C) 2000 Elsevier B.V. S.A. All rights reserved.
Resumo:
The preparation of crack-free SnO2 supported membranes requires the development of new strategies of synthesis capable to allow controlled changes of surface chemistry and to improve the processability of supported layers. In this way, the controlled modification of the SnO2 nanoparticle surface by adding capping molecules like Tiron(R) ((OH)(2)C6H2(SO3Na)(2)) during the sol-gel process was studied, aiming to obtain high performance membranes. Colloidal suspensions were prepared by hydrolyzing SnCl4.5H(2)O aqueous solution with NH4OH in presence of Tiron(R). The effect of the amount of Tiro(R) (from I to 20 wt.%) on the structural features of nanoparticles, powder redispersability and particle-solution interface properties was investigated by X-ray powder diffraction (XRPD), extended X-ray absorption fine structure (EXAFS), quasi-elastic light scattering and electrophoretic mobility measurements. XRPD and EXAFS results showed that the addition of Tiron(R) up to 20 wt.% to colloidal suspensions does not affect the crystallite size of SnO2 primary particles, determined around 2-3 nm. This value is comparable to the hydrodynamic size measured after redispersion of powder prepared with amount of Tiro(R) higher than 7.5 wt.%, indicating the absence of condensation reactions between primary particles after the initial precipitation step. As a consequence the powder with amount of Tiron(R) > 7.5 wt.%, can be fully redispersed in aqueous solution at pH greater than or equal to I I until a nanoparticle concentration of 6 vol.%. The electrophoresis measurements showed a decrease of the isoelectric point by increasing the amount of grafted Tiron(R) at the SnO2 nanoparticle surface, resulting in negatively charged particle-solution interface in all the studied pH range (2-11). These features govern the gelation process favoring the preparation of crack-free SnO2 supported membranes. The control exercised by Tiron(R) modifying agent in the aggregation process allows the fine-tuning of the porosity, from 0.124 to 0.065 cm(3) g(-1), and mean pore size, from 6.4 to 1.9 nm, as the amount of grafted molecules increases from 0 to 10 wt.%. In consequence, the membrane cut-off determined by filtration of polyethylene glycol standard solutions can be screened from 1500 to 3500 g mol(-1). (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The effect of Sb doping in SnO2 thin films prepared by the sol-gel dip-coating (SGDC) process is investigated. Electronic and structural properties are evaluated through synchrotron radiation measurements by EXAFS and XANES. These data indicate that antimony is in the oxidation state W, and replaces tin atoms (Sn4+), at a grain surface site. Although the substitution yields net free carrier concentration, the electrical conductivity is increased only slightly, because it is reduced by the high grain boundary scattering. The overall picture leads to a shortening of the grain boundary potential, where oxygen vacancies compensate for oxygen adsorbed species, decreasing the trapped charge at grain boundary. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Nd3+-based organic/inorganic hybrids have potential application in the field of integrated optics. Attractive sol-gel derived di-urea and di-urethane cross-linked poly (oxyethylene) (POE)/siloxane hybrids (di-ureasils and di-urethanesils, respectively) doped with neodymium triflate (Nd(CF3SO3)(3)) were examined by Fourier transform mid-infrared (FT-IR), Raman (FT-Raman), Si-29 magic-angle spinning (MAS) nuclear magnetic resonance (NMR) and photoluminescence spectroscopies, and small-angle X-ray scattering (SAXS). The goals of this work were to determine which cation coordinating site of the host matrix (ether oxygen atoms or carbonyl oxygen atoms) is active in each of the materials analyzed, its influence on the nanostructure of the samples and its relation with the photoluminescence properties. The main conclusion derived from this study is that the hydrogen-bonded associations formed throughout the materials play a major role in the hybrids nanostructure and photoluminescence properties.
Resumo:
Alkaline metal doped organic - inorganic hybrids have potential applications in the field of portable energy sources. Attractive sol - gel derived urea cross-linked polyether, siloxane - PPO ( poly( propylene oxide)) hybrids doped with sodium salts ( NaClO4 and NaBF4) were examined by multi-spectroscopic approach that includes complex impedance, X-ray powder diffraction (XRPD), small angle X-ray scattering (SAXS), Si-29 and Na-23 magic-angle spinning nuclear magnetic resonance (NMR/MAS), Na K-edge X-ray absorption near edge structure (XANES) and Raman spectroscopies. The goals of this work were to determine which cation coordinating site of the host matrix ( ether oxygen atoms or carbonyl oxygen atoms) is active in each of the materials analyzed, its influence on the nanostructure of the samples and its relation with the thermal and electrical properties. The main conclusion derived from this study is that the NaBF4 salt has a much lower solubility in the hybrid matrix than the NaClO4 salt. Furthermore, the addition of a large amount of salt plays a major role in the hybrid nanostructure and electrical properties, modifying the PPO chain conformation, weakening or breaking the hydrogen bond of the polyether - urea associations and changing the polycondensation and aggregation processes involving the siloxane species.
Resumo:
Calcium modified lead titanate sol was synthesized using a soft solution processing, the so-called polymeric precursor method. In soft chemistry method, soluble precursors such as lead acetate trihydrate, calcium carbonate and titanium isopropoxide, as starting materials, were mixed in aqueous solution. Pb0.7Ca0.3TiO3 thin films were deposited on platinum-coated silicon and quartz substrates by means of the spinning technique. The surface morphology and crystal structure, dielectric and optical properties of the thin films were investigated. The electrical measurements were conducted on metal-ferroelectric-metal (MFM) capacitors. The typical measured small signal dielectric constant and dissipation factor at a frequency of 100 kHz were 299 and 0.065, respectively, for a thin film with 230 nm thickness annealed at 600degreesC for 2 h. The remanent polarization (2P(r)) and coercive field (E-c) were 32 muC/cm(2) and 100 kV/cm, respectively. Transmission spectra were recorded and from them, refractive index, extinction coefficient, and band gap energy were calculated. Thin films exhibited good optical transmissivity, and had optical direct transitions. The present study confirms the validity of the DiDomenico model for the interband transition, with a single electronic oscillator at 6.858 eV. The optical dispersion behavior of PCT thin film was found to fit well the Sellmeir dispersion equation. The band gap energy of the thin film, annealed at 600degreesC, was 3.56 eV. The results confirmed that soft solution processing provides an inexpensive and environmentally friendly route for the preparation of PCT thin films.
Resumo:
A thermostimulated sol-gel transition in a system prepared by mixing a ZrOCl(2) acidified solution to a hot H(2)SO(4) aqueous solution was studied by dynamic theological measurements and quasi-elastic light scattering. The effect of temperature and of molar ratio R(S) = [Zr]/[SO(4)] on the gelation kinetics was analyzed using the mass fractal aggregate growth model. This study shows that the linear growth of aggregates occurs at the early period of transformation, while bidimensional growth occurs at the advanced stage. The bidimensional growth can be shifted toward monodimensional growth by decreasing the aggregation rate by controlling the temperature and/or molar ratio R(S). EXAFS and Raman results gave evidence that the linear chain growth is supported by covalent sulfate bonding between primary building blocks. At the advanced stage of aggregation, the assembly of linear chains through hydrogen bonding gave rise to the growth of bidimensional particles.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)