924 resultados para SELF-ASSEMBLED MULTILAYERS
Resumo:
The eluent droplet size defines the number of sampling compartments in a continuously operated annular electrochromatograph and therefore influences separation efficiency. In this work, an assembly of two capillaries, a feeding capillary on the top and a receiving capillary placed under it, has been investigated to control droplet size. The receiving capillary prevents the liquid droplet formation beyond a critical size, which reduces the volume of sampling compartment as compared with the case of the electrolyte flow driven solely by gravity. With a receiving capillary, the electrolyte droplet size was reduced from 1.5 to 0.46 mm. Further decrease of droplet size was not possible due to a so-called droplet jump upwards effect which has been observed on a hydrophilic glass surface with water. A typical electrolyte used in CAEC has high methanol content. In an attempt to improve the methanol-repellent properties of the glass surface, two approaches have been implemented: (i) self-assembled chemisorbed monolayers of an alkylsiloxane and (ii) fabrication of a nano-pin film. The methanol-repellent surface of the feeding capillary suppressed the droplet jump upwards effect. The surface remained methanol repellent in different solutions with lower polarity than that of water.
Resumo:
Current trends in the development of microstructured reactors with thin catalytic films (from 100 nm up to several microns) that have self-assembled nanostructures are discussed. A major technique that is used to prepare such films is sol-gel processing. This involves depositing a complex fluid on a microstructured substrate by dip, spin, or spray coating, followed by surfactant removal to form the porous nanostructures. A novel methodology has been developed by which a uniform coating containing controlled amounts of (poly) metallic nanoparticles can be obtained. This elegant strategy is based on the condensation of metal oxide species by self-assembly in the presence of metallic colloids. The potential microreactor applications brought forth by this innovative protocol are placed in perspective in the light of its versatility.
Resumo:
Modifying the surfaces of metal nanoparticles with self-assembled monolayers of functionalized thiols provides a simple and direct method to alter their surface properties. Mixed self-assembled monolayers can extend this approach since, in principle, the surfaces can be tuned by altering the proportion of each modifier that is adsorbed. However, this works best if the composition and microstructure of the monolayers can be controlled. Here, we have modified preprepared silver colloids with binary mixtures of thiols at varying concentrations and modifier ratios. Surface-enhanced Raman spectroscopy was then used to determine the effect of altering these parameters on the composition of the resulting mixed monolayers. The data could be explained using a new model based on a modified competitive Langmuir approach. It was found that the composition of the mixed monolayer only reflected the ratio of modifiers in the feedstock when the total amount of modifier was sufficient for approximately one monolayer coverage. At higher modifier concentrations the thermodynamically favored modifier dominated, but working at near monolayer concentrations allowed the surface composition to be controlled by changing the ratios of modifiers. Finally, a positively charged porphyrin probe molecule was used to investigate the microstructure of the mixed monolayers, i.e., homogeneous versus domains. In this case the modifier domains were found to be <2 nm.
Resumo:
The phase instability of bismuth perovskite (BiMO3), where M is a ferromagnetic cation, is exploited to create self-assembled magnetic oxide nanocrystal arrays on oxide supports. Conditions during pulsed laser deposition are tuned so as to induce complete breakdown of the perovskite precursor into bismuth oxide (Bi2 O3 ) and metal oxide (M-Ox ) pockets. Subsequent cooling in vacuum volatizes the Bi2 O3 leaving behind an array of monodisperse nanocrystals. In situ reflective high energy electron diffraction beam is exploited to monitor the synthesis in real-time. Analysis of the patterns confi rms the phase separation and volatization process. Successful synthesis of M-Ox, where M = Mn, Fe, Co, and Cr, is shown using this template-free facile approach. Detailed magnetic characterization of nanocrystals is carried out to reveal the functionalities such as magnetic anisotropy as well as larger than bulk moments, as expected in these oxide nanostructures.
Resumo:
Localized plasmon resonances of spherical nanovoid arrays strongly enhance solar cell performance by a factor of 3.5 in external quantum efficiency at plasmonic resonances, and a four-fold enhancement in overall power conversion efficiency. Large area substrates of silver nanovoids are electrochemically templated through self-assembled colloidal spheres and organic solar cells fabricated on top. Our design represents a new class of plasmonic photovoltaic enhancement: that of localized plasmon-enhanced absorption within nanovoid structures. Angularly-resolved spectra demonstrate strong localized Mie plasmon modes within the nanovoids. Theoretical modelling shows varied spatial dependence of light intensity within the void region suggesting a first possible route towards Third Generation plasmonic photovoltaics. (C) 2011 Optical Society of America
Resumo:
A biochip based on surface plasmon resonance was fabricated to detect prostate specific antigen-a1-antichymotrypsin (PSA-ACT complex) in both HBS buffer and human serum. To reduce non-specific binding and steric hindrance effect, the chemical surface of the sensor chips was constructed by using various oligo(ethylene glycol) mixtures of different molar ratios of HS(CH2)11(OCH2CH2)6OCH2COOH and HS(CH2)11(OCH2CH2)3OH. The self-assembled monolayers were biotinylated to facilitate the immobilization of streptavidin. Using the chip surfaces, PSA-ACT complex in HBS buffer and human serum was detected at 20.7 and 47.5 ng/ml by primary immunoresponse, respectively. However, the limit of detection could be simply enhanced by a sandwich strategy to improve the sensitivity and specificity of the immunoassay. An intact PSA polyclonal antibody was used as an amplifying agent in the strategy. As a result, PSA-ACT complex concentrations as low as 10.2 and 18.1 ng/ml were found in the HBS buffer and human serum sample, respectively. The result indicates that this approach could satisfy our goal without modifying the secondary interactant.
Resumo:
A surface plasmon resonance (SPR)-based inhibition assay method using a polyclonal anti-mouse IgM arrayed Cryptosporidium sensor chip was developed for the real-time detection of Cryptosporidium parvum oocysts. The Cryptosporidium sensor chip was fabricated by subsequent immobilization of streptavidin and polyclonal anti-mouse IgM (secondary antibody) onto heterogeneous self-assembled monolayers (SAMs). The assay consisted of the immunoreaction step between monoclonal anti-C. parvum oocyst (primary antibody) and oocysts, followed by the binding step of the unbound primary antibody onto the secondary antibody surface. It enhanced not only the immunoreaction yield of the oocysts by batch reaction but also the accessibility of analytes to the chip surface by antibody–antibody interaction. Furthermore, the use of optimum concentration of the primary antibody maximized its binding response on the chip. An inversely linear calibration curve for the oocyst concentration versus SPR signal was obtained in the range of 1×106–1×102 oocysts ml-1. The oocyst detection was also successfully achieved in natural water systems. These results indicate that the SPR-based inhibition assay using the Cryptosporidium sensor chip has high application potential for the real-time analysis of C. parvum oocyst in laboratory and field water monitoring.
Resumo:
Herein, we present the use of a single gold nanorod sensor for detection of diseases on an antibody-functionalized surface, based on antibody–antigen interaction and the localized surface plasmon resonance (LSPR) ?max shifts of the resonant Rayleigh light scattering spectra. By replacing the cetyltrimethylammonium bromide (CTAB), a tightly packed self-assembled monolayer of HS(CH2)11(OCH2CH2)6OCH2COOH(OEG6) has been successfully formed on the gold nanorod surface prior to the LSPR sensing, leading to the successful fabrication of individual gold nanorod immunosensors. Using prostate specific antigen (PSA) as a protein biomarker, the lowest concentration experimentally detected was as low as 111 aM, corresponding to a 2.79 nm LSPR ?max shift. These results indicate that the detection platform is very sensitive and outperforms detection limits of commercial tests for PSA so far. Correlatively, its detection limit can be equally compared to the assays based on DNA biobarcodes. This study shows that a gold nanorod has been used as a single nanobiosensor to detect antigens for the first time; and the detection method based on the resonant Rayleigh scattering spectrum of individual gold nanorods enables a simple, label-free detection with ultrahigh sensitivity.
Resumo:
In this perspective, we highlight the issue of meridional (mer) and facial (fac) orientation of asymmetrical diimines in tris-chelate transition metal complexes. Diimine ligands have long been the workhorse of coordination chemistry, and whilst there are now good strategies to isolate materials where the inherent metal centered chirality is under almost complete control, and systematic methodologies to isolate heteroleptic complexes, the conceptually simple geometrical isomerism has not been widely investigated. In systems where the two donor atoms are significantly different in terms of the σ-donor and π-accepting ability, the fac isomer is likely to be the thermodynamic product. For the diimine complexes with two trigonal planar nitrogen atoms there is much more subtlety to the system, and external factors such as the solvent, lattice packing and the various steric considerations play a delicate role in determining the observed and isolable product. In this article we discuss the possibilities to control the isomeric ratio in labile systems, consider the opportunities to separate inert complexes and discuss the observed differences in their spectroscopic properties. Finally we report on the ligand orientation in supramolecular systems where facial coordination leads to simple regular structures such as helicates and tetrahedra, but the ability of the ligand system to adopt a mer orientation enables self-assembled structures of considerable beauty and complexity.
Resumo:
Dissertação de Mestrado, Engenharia Biológica, Faculdade de Engenharia de Recursos Naturais, Universidade do Algarve, 2009
Resumo:
Thesis (Ph.D.)--University of Washington, 2015
Resumo:
The performance of an amperometric biosensor constructed by associating tyrosinase (Tyr) enzyme with the advantages of a 3D gold nanoelectrode ensemble (GNEE) is evaluated in a flow-injection analysis (FIA) system for the analysis of l-dopa. GNEEs were fabricated by electroless deposition of the metal within the pores of polycarbonate track-etched membranes. A simple solvent etching procedure based on the solubility of polycarbonate membranes is adopted for the fabrication of the 3D GNEE. Afterward, enzyme was immobilized onto preformed self-assembled monolayers of cysteamine on the 3D GNEEs (GNEE-Tyr) via cross-linking with glutaraldehyde. The experimental conditions of the FIA system, such as the detection potential (−0.200 V vs. Ag/AgCl) and flow rates (1.0 mL min−1) were optimized. Analytical responses for l-dopa were obtained in a wide concentration range between 1 × 10−8 mol L−1 and 1 × 10−2 mol L−1. The limit of quantification was found to be 1 × 10−8 mol L−1 with a resultant % RSD of 7.23% (n = 5). The limit of detection was found to be 1 × 10−9 mol L−1 (S/N = 3). The common interfering compounds, namely glucose (10 mmol L−1), ascorbic acid (10 mmol L−1), and urea (10 mmol L−1), were studied. The recovery of l-dopa (1 × 10−7 mol L−1) from spiked urine samples was found to be 96%. Therefore, the developed method is adequate to be applied in the clinical analysis.
Resumo:
A gold screen printed electrode (Au-SPE) was modified by merging Molecular Imprinting and Self-Assembly Monolayer techniques for fast screening cardiac biomarkers in point-of-care (POC). For this purpose, Myoglobin (Myo) was selected as target analyte and its plastic antibody imprinted over a glutaraldehyde (Glu)/cysteamine (Cys) layer on the gold-surface. The imprinting effect was produced by growing a reticulated polymer of acrylamide (AAM) and N,N′-methylenebisacrylamide (NNMBA) around the Myo template, covalently attached to the biosensing surface. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) studies were carried out in all chemical modification steps to confirm the surface changes in the Au-SPE. The analytical features of the resulting biosensor were studied by different electrochemical techniques, including EIS, square wave voltammetry (SWV) and potentiometry. The limits of detection ranged from 0.13 to 8 μg/mL. Only potentiometry assays showed limits of detection including the cut-off Myo levels. Quantitative information was also produced for Myo concentrations ≥0.2 μg/mL. The linear response of the biosensing device showed an anionic slope of ~70 mV per decade molar concentration up to 0.3 μg/mL. The interference of coexisting species was tested and good selectivity was observed. The biosensor was successfully applied to biological fluids.
Resumo:
Myoglobin (Mb) is among the cardiac biomarkers playing a major role in urgent diagnosis of cardiovascular diseases. Its monitoring in point-of-care is therefore fundamental. Pursuing this goal, a novel biomimetic ionophore for the potentiometric transduction of Mb is presented. It was synthesized by surface molecular imprinting (SMI) with the purpose of developing highly efficient sensor layers for near-stereochemical recognition of Mb. The template (Mb) was imprinted on a silane surface that was covalently attached to silica beads by means of self-assembled monolayers. First the silica was modified with an external layer of aldehyde groups. Then, Mb was attached by reaction with its amine groups (on the external surface) and subsequent formation of imine bonds. The vacant places surrounding Mb were filled by polymerization of the silane monomers 3-aminopropyltrimethoxysilane (APTMS) and propyltrimethoxysilane (PTMS). Finally, the template was removed by imine cleavage after treatment with oxalic acid. The results materials were finely dispersed in plasticized PVC selective membranes and used as ionophores in potentiometric transduction. The best analytical features were found in HEPES buffer of pH 4. Under this condition, the limits of detection were of 1.3 × 10−6 mol/L for a linear response after 8.0 × 10−7 mol/L with an anionic slope of −65.9 mV/decade. The imprinting effect was tested by preparing non-imprinted (NI) particles and employing these materials as ionophores. The resulting membranes showed no ability to detect Mb. Good selectivity was observed towards creatinine, sacarose, fructose, galactose, sodium glutamate, and alanine. The analytical application was conducted successfully and showed accurate and precise results.
Resumo:
Nous investiguons dans ce travail la dynamique des excitons dans une couche mince d’agrégats H autoassemblés hélicoïdaux de molécules de sexithiophène. Le couplage intermoléculaire (J=100 meV) place ce matériau dans la catégorie des semi-conducteurs à couplage de type intermédiaire. Le désordre énergétique et la forte interaction électronsphonons causent une forte localisation des excitons. Les espèces initiales se ramifient en deux états distincts : un état d’excitons autopiégés (rendement de 95 %) et un état à transfert de charge (rendement de 5%). À température de la pièce (293K), les processus de sauts intermoléculaires sont activés et l’anisotropie de la fluorescence décroît rapidement à zéro en 5 ns. À basse température (14K), les processus de sauts sont gelés. Pour caractériser la dynamique de diffusion des espèces, une expérience d’anisotropie de fluorescence a été effectuée. Celle-ci consiste à mesurer la différence entre la photoluminescence polarisée parallèlement au laser excitateur et celle polarisée perpendiculairement, en fonction du temps. Cette mesure nous donne de l’information sur la dépolarisation des excitons, qui est directement reliée à leur diffusion dans la structure supramoléculaire. On mesure une anisotropie de 0,1 après 20 ns qui perdure jusqu’à 50ns. Les états à transfert de charge causent une remontée de l’anisotropie vers une valeur de 0,15 sur une plage temporelle allant de 50 ns jusqu’à 210 ns (période entre les impulsions laser). Ces résultats démontrent que la localisation des porteurs est très grande à 14K, et qu’elle est supérieure pour les espèces à transfert de charge. Un modèle numérique simple d’équations différentielles à temps de vie radiatif et de dépolarisation constants permet de reproduire les données expérimentales. Ce modèle a toutefois ses limitations, notamment en ce qui a trait aux mécanismes de dépolarisation des excitons.