959 resultados para SECRETORY CAVITIES
Resumo:
This is the first TEM examination of vitellogenesis in the cestode Aporhynchus menezesi, a parasite of the velvet belly lanternshark Etmopterus spinax and a member of a little-studied trypanorhynch family, the Aporhynchidae. The synthetic activity of vitellocytes plays two important functions in the developmental biology of cestodes: (1) their shell-globules serve in eggshell formation; and (2) their accumulated reserves of glycogen and lipids represent a food source for the developing embryo. In A. menezesi, vitelline follicles consist of cells at various stages of development, from peripheral, immature cells of the gonial type to mature cells towards the centre of the follicle. These stages are: (I) immature; (II) early differentiation; (III) advanced maturation; and (IV) mature. Gradual changes involved in this process occur within each stage. Vitellogenesis involves: (1) an increase in cell volume; (2) the development of a smooth endoplasmic reticulum and an accelerated formation and accumulation of both unsaturated and saturated lipid droplets, along with their continuous enlargement and fusion; (3) the formation of individual β-glycogen particles and their accumulation in the form of glycogen islands scattered among lipid droplets in the cytoplasm of maturing and mature vitellocytes; (4) the rapid accumulation of large, moderately saturated lipid droplets accompanied by dense accumulations of β-glycogen along with proteinaceous shell-globules or shell-globule clusters in the peripheral layer during the advanced stage of maturation; (5) the development of cisternae of granular endoplasmic reticulum that produce dense, proteinaceous shell-globules; (6) the development of Golgi complexes engaged in the packaging of this material; and (7) the progressive and continuous enlargement of shell-globules into very large clusters in the peripheral layer during the advanced stage of maturation. Vitellogenesis in A. menezesi, only to some extent, resembles that previously described for four other trypanorhynchs. It differs in: (i) the reversed order of secretory activities in the differentiating vitellocytes, namely the accumulation of large lipid droplets accompanied by glycogenesis or β-glycogen formation during early differentiation (stage II), i.e. before the secretory activity, which is predominantly protein synthesis for shell-globule formation (stage III); (ii) the very heavy accumulation of large lipid droplets during the final stage of cytodifferentiation (stage IV); and (iii) the small number of β-glycogen particles present in mature vitellocytes. Ultracytochemical staining with PA-TCH-SP for glycogen proved positive for a small number of β-glycogen particles in differentiating and mature vitellocytes. Hypotheses, concerning the interrelationships of patterns of vitellogenesis, possible modes of egg formation, embryonic development and life-cycles, are commented upon.
Resumo:
In the wild, animals have developed survival strategies relying on their senses. The individual ability to identify threatening situations is crucial and leads to increase in the overall fitness of the species. Rodents, for example have developed in their nasal cavities specialized olfactory neurons implicated in the detection of volatile cues encoding for impending danger such as predator scents or alarm pheromones. In particular, the neurons of the Grueneberg ganglion (GG), an olfactory subsystem, are implicated in the detection of danger cues sharing a similar chemical signature, a heterocyclic sulfur- or nitrogen-containing motif. Here we used a "from the wild to the lab" approach to identify new molecules that are involuntarily emitted by predators and that initiate fear-related responses in the recipient animal, the putative prey. We collected urines from carnivores as sources of predator scents and first verified their impact on the blood pressure of the mice. With this approach, the urine of the mountain lion emerged as the most potent source of chemical stress. We then identified in this biological fluid, new volatile cues with characteristic GG-related fingerprints, in particular the methylated pyridine structures, 2,4-lutidine and its analogs. We finally verified their encoded danger quality and demonstrated their ability to mimic the effects of the predator urine on GG neurons, on mice blood pressure and in behavioral experiments. In summary, we were able to identify here, with the use of an integrative approach, new relevant molecules, the pyridine analogs, implicated in interspecies danger communication.
Resumo:
Objective: The goal of the present retrospective study is to describe the distribution of the supernumerary teeth in a population of patients that have been attended at the Public Clinic of the Department of Oral Surgery. Background: Supernumerary teeth and multiple hyperdontia are usually associated with different syndromes, such as Gardner syndrome, or with facial fissures; however, they can appear in patients without any pathology. Their prevalence oscillates to 0.5-3.8% in patients with permanent teeth and to 0.35-0.6% in patients with primary teeth. Patients and Methods: A total of 36,057 clinical histories of patients that were admitted at the clinic between September of 1991 and March of 2003 were revised. The following data were extrapolated: age, sex, number of extracted supernumerary teeth, localization, morphology and type of supernumerary teeth. Consequently, 102 patients were included into the present study. Results: Of the 147 supernumerary teeth identified in the oral cavities of patients 145 were extracted. The most frequent supernumerary teeth identified were mesiodens (46.9%), followed by premolars (24.1%) and fourth molars or distal molars (18%). As for location, 74.5% of the supernumerary teeth were found in the superior maxillary bone and 46.9% of the supernumerary teeth were present in the palatine/lingual area. Heteromorphology was found in two thirds of the supernumerary teeth, with conical shape being the most frequent. Finally, 29.7% of the supernumerary teeth had occlusion with permanent teeth, and mesiodens were the predominating type of supernumerary teeth that showed this feature. Conclusions: Mesiodens very frequently cause retention of permanent incisors, which erupt spontaneously after the extraction of supernumerary teeth, if there is sufficient space in the dental arch and if they conserve the eruptive force. Generally, supernumerary premolars are eumorphic and are casually discovered during radiological exam, if not producing any symptomology.
Resumo:
This is the first TEM examination of vitellogenesis in the cestode Aporhynchus menezesi, a parasite of the velvet belly lanternshark Etmopterus spinax and a member of a little-studied trypanorhynch family, the Aporhynchidae. The synthetic activity of vitellocytes plays two important functions in the developmental biology of cestodes: (1) their shell-globules serve in eggshell formation; and (2) their accumulated reserves of glycogen and lipids represent a food source for the developing embryo. In A. menezesi, vitelline follicles consist of cells at various stages of development, from peripheral, immature cells of the gonial type to mature cells towards the centre of the follicle. These stages are: (I) immature; (II) early differentiation; (III) advanced maturation; and (IV) mature. Gradual changes involved in this process occur within each stage. Vitellogenesis involves: (1) an increase in cell volume; (2) the development of a smooth endoplasmic reticulum and an accelerated formation and accumulation of both unsaturated and saturated lipid droplets, along with their continuous enlargement and fusion; (3) the formation of individual β-glycogen particles and their accumulation in the form of glycogen islands scattered among lipid droplets in the cytoplasm of maturing and mature vitellocytes; (4) the rapid accumulation of large, moderately saturated lipid droplets accompanied by dense accumulations of β-glycogen along with proteinaceous shell-globules or shell-globule clusters in the peripheral layer during the advanced stage of maturation; (5) the development of cisternae of granular endoplasmic reticulum that produce dense, proteinaceous shell-globules; (6) the development of Golgi complexes engaged in the packaging of this material; and (7) the progressive and continuous enlargement of shell-globules into very large clusters in the peripheral layer during the advanced stage of maturation. Vitellogenesis in A. menezesi, only to some extent, resembles that previously described for four other trypanorhynchs. It differs in: (i) the reversed order of secretory activities in the differentiating vitellocytes, namely the accumulation of large lipid droplets accompanied by glycogenesis or β-glycogen formation during early differentiation (stage II), i.e. before the secretory activity, which is predominantly protein synthesis for shell-globule formation (stage III); (ii) the very heavy accumulation of large lipid droplets during the final stage of cytodifferentiation (stage IV); and (iii) the small number of β-glycogen particles present in mature vitellocytes. Ultracytochemical staining with PA-TCH-SP for glycogen proved positive for a small number of β-glycogen particles in differentiating and mature vitellocytes. Hypotheses, concerning the interrelationships of patterns of vitellogenesis, possible modes of egg formation, embryonic development and life-cycles, are commented upon.
Resumo:
Inverted ductal papilloma of the oral cavity is an infrequent benign neoplasm of papillary appearance that originates in the secretory duct of a salivary gland. The etiology is unknown, though some authors have related it to human papillomavirus (HPV) infection. We present the case of a 40-year-old woman with a tumor of the lower lip mucosa. Histopathological study of the lesion diagnosed inverted ductal papilloma of the oral cavity. Human papillomavirus DNA detection and typing based on tumor lesion DNA amplification and posterior hybridization, revealed no presence of viral DNA. The antecedents of trauma reported by the patient could have played an important role in the development of this tumor
Resumo:
Post-testicular sperm maturation occurs in the epididymis. The ion concentration and proteins secreted into the epididymal lumen, together with testicular factors, are believed to be responsible for the maturation of spermatozoa. Disruption of the maturation of spermatozoa in the epididymis provides a promising strategy for generating a male contraceptive. However, little is known about the proteins involved. For drug development, it is also essential to have tools to study the function of these proteins in vitro. One approach for screening novel targets is to study the secretory products of the epididymis or the G protein-coupled receptors (GPCRs) that are involved in the maturation process of the spermatozoa. The modified Ca2+ imaging technique to monitor release from PC12 pheochromocytoma cells can also be applied to monitor secretory products involved in the maturational processes of spermatozoa. PC12 pheochromocytoma cells were chosen for evaluation of this technique as they release catecholamines from their cell body, thus behaving like endocrine secretory cells. The results of the study demonstrate that depolarisation of nerve growth factor -differentiated PC12 cells releases factors which activate nearby randomly distributed HEL erythroleukemia cells. Thus, during the release process, the ligands reach concentrations high enough to activate receptors even in cells some distance from the release site. This suggests that communication between randomly dispersed cells is possible even if the actual quantities of transmitter released are extremely small. The development of a novel method to analyse GPCR-dependent Ca2+ signalling in living slices of mouse caput epididymis is an additional tool for screening for drug targets. By this technique it was possible to analyse functional GPCRs in the epithelial cells of the ductus epididymis. The results revealed that, both P2X- and P2Y-type purinergic receptors are responsible for the rapid and transient Ca2+ signal detected in the epithelial cells of caput epididymides. Immunohistochemical and reverse transcriptase-polymerase chain reaction (RTPCR) analyses showed the expression of at least P2X1, P2X2, P2X4 and P2X7, and P2Y1 and P2Y2 receptors in the epididymis. Searching for epididymis-specific promoters for transgene delivery into the epididymis is of key importance for the development of specific models for drug development. We used EGFP as the reporter gene to identify proper promoters to deliver transgenes into the epithelial cells of the mouse epididymis in vivo. Our results revealed that the 5.0 kb murine Glutathione peroxidase 5 (GPX5) promoter can be used to target transgene expression into the epididymis while the 3.8 kb Cysteine-rich secretory protein-1 (CRISP-1) promoter can be used to target transgene expression into the testis. Although the visualisation of EGFP in living cells in culture usually poses few problems, the detection of EGFP in tissue sections can be more difficult because soluble EGFP molecules can be lost if the cell membrane is damaged by freezing, sectioning, or permeabilisation. Furthermore, the fluorescence of EGFP is dependent on its conformation. Therefore, fixation protocols that immobilise EGFP may also destroy its usefulness as a fluorescent reporter. We therefore developed a novel tissue preparation and preservation techniques for EGFP. In addition, fluorescence spectrophotometry with epididymal epithelial cells in suspension revealed the expression of functional purinergic, adrenergic, cholinergic and bradykinin receptors in these cell lines (mE-Cap27 and mE-Cap28). In conclusion, we developed new tools for studying the role of the epididymis in sperm maturation. We developed a new technique to analyse GPCR dependent Ca2+ signalling in living slices of mouse caput epididymis. In addition, we improved the method of detecting reporter gene expression. Furthermore, we characterised two epididymis-specific gene promoters, analysed the expression of GPCRs in epididymal epithelial cells and developed a novel technique for measurement of secretion from cells.
Resumo:
Matrix metalloproteinases (MMPs) are major executors of extracellular matrix remodeling and, consequently, play key roles in the response of cells to their microenvironment. The experimentally accessible stem cell population and the robust regenerative capabilities of planarians offer an ideal model to study how modulation of the proteolytic system in the extracellular environment affects cell behavior in vivo. Genome-wide identification of Schmidtea mediterranea MMPs reveals that planarians possess four mmp-like genes. Two of them (mmp1 and mmp2) are strongly expressed in a subset of secretory cells and encode putative matrilysins. The other genes (mt-mmpA and mt-mmpB) are widely expressed in postmitotic cells and appear structurally related to membrane-type MMPs. These genes are conserved in the planarian Dugesia japonica. Here we explore the role of the planarian mmp genes by RNA interference (RNAi) during tissue homeostasis and regeneration. Our analyses identify essential functions for two of them. Following inhibition of mmp1 planarians display dramatic disruption of tissues architecture and significant decrease in cell death. These results suggest that mmp1 controls tissue turnover, modulating survival of postmitotic cells. Unexpectedly, the ability to regenerate is unaffected by mmp1(RNAi). Silencing of mt-mmpA alters tissue integrity and delays blastema growth, without affecting proliferation of stem cells. Our data support the possibility that the activity of this protease modulates cell migration and regulates anoikis, with a consequent pivotal role in tissue homeostasis and regeneration. Our data provide evidence of the involvement of specific MMPs in tissue homeostasis and regeneration and demonstrate that the behavior of planarian stem cells is critically dependent on the microenvironment surrounding these cells. Studying MMPs function in the planarian model provides evidence on how individual proteases work in vivo in adult tissues. These results have high potential to generate significant information for development of regenerative and anti cancer therapies.
Resumo:
The pancreas produces enzymes with a digestive function and hormones with a metabolic function, which are produced by distinct cell types of acini and islets, respectively. Within these units, secretory cells coordinate their functioning by exchanging information via signals that flow in the intercellular spaces and are generated either at distance (several neural and hormonal inputs) or nearby the pancreatic cells themselves (inputs mediated by membrane ionic-specific channels and by ionic- and metabolite-permeant pannexin channels and connexin "hemichannels"). Pancreatic secretory cells further interact via the extracellular matrix of the pancreas (inputs mediated by integrins) and directly with neighboring cells, by mechanisms that do not require extracellular mediators (inputs mediated by gap and tight junction channels). Here, we review the expression and function of the connexins and pannexins that are expressed by the main secretory cells of the exocrine and endocrine pancreatic cells. Available data show that the patterns of expression of these proteins differ in acini and islets, supporting distinct functions in the physiological secretion of pancreatic enzymes and hormones. Circumstantial evidence further suggests that alterations in the signaling provided by these proteins are involved in pancreatic diseases.
Resumo:
The analysis of paraxial Gaussian beams features in most undergraduate courses in laser physics, advanced optics and photonics. These beams provide a simple model of the field generated in the resonant cavities of lasers, thus constituting a basic element for understanding laser theory. Usually, uniformly polarized beams are considered in the analytical calculations, with the electric field vibrating at normal planes to the propagation direction. However, such paraxial fields do not verify the Maxwell equations. In this paper we discuss how to overcome this apparent contradiction and evaluate the longitudinal component that any paraxial Gaussian beam should exhibit. Despite the fact that the assumption of a purely transverse paraxial field is useful and accurate, the inclusion of the above issue in the program helps students to clarify the importance of the electromagnetic nature of light, thus providing a more complete understanding of the paraxial approach.
Resumo:
Insulin secretion from pancreatic β cells plays a central role in the control of blood glucose levels. The amount of insulin released by β cells is precisely adjusted to match organism requirements. A number of conditions that arise during life, including pregnancy and obesity, can result in a decreased sensitivity of insulin target tissues and a consequent rise in insulin needs. To preserve glucose homoeostasis, the augmented insulin demand requires a compensatory expansion of the pancreatic β cell mass and an increase in its secretory activity. This compensatory process is accompanied by modifications in β cell gene expression, although the molecular mechanisms underlying the phenomenon are still poorly understood. Emerging evidence indicates that at least part of these compensatory events may be orchestrated by changes in the level of a novel class of gene regulators, the microRNAs. Indeed, several of these small, non-coding RNAs have either positive or negative impacts on β cell proliferation and survival. The studies reviewed here suggest that the balance between the actions of these two groups of microRNAs, which have opposing functional effects, can determine whether β cells expand sufficiently to maintain blood glucose levels in the normal range or fail to meet insulin demand and thus lead, as a consequence, towards diabetes manifestation. A better understanding of the mechanisms governing changes in the microRNA profile will open the way for the development of new strategies to prevent and/or treat both type 2 and gestational diabetes.
Resumo:
Previous studies have shown that rat intestinal immunoglobulin A (IgA) concentration and lymphocyte composition of the intestinal immune system were influenced by a highly enriched cocoa diet. The aim of this study was to dissect the mechanisms by which a long-term high cocoa intake was capable of modifying gut secretory IgA in Wistar rats. After 7 weeks of nutritional intervention, Peyer's patches, mesenteric lymph nodes and the small intestine were excised for gene expression assessment of IgA, transforming growth factor ß, C-C chemokine receptor-9 (CCR9), interleukin (IL)-6, CD40, retinoic acid receptors (RAR¿ and RARß), C-C chemokine ligand (CCL)-25 and CCL28 chemokines, polymeric immunoglobulin receptor and toll-like receptors (TLR) expression by real-time polymerase chain reaction. As in previous studies, secretory IgA concentration decreased in intestinal wash and fecal samples after cocoa intake. Results from the gene expression showed that cocoa intake reduced IgA and IL¿6 in Peyer's patches and mesenteric lymph nodes, whereas in small intestine, cocoa decreased IgA, CCR9, CCL28, RAR¿ and RARß. Moreover, cocoa-fed animals presented an altered TLR expression pattern in the three compartments studied. In conclusion, a high-cocoa diet down-regulated cytokines such as IL-6, which is required for the activation of B cells to become IgA-secreting cells, chemokines and chemokine receptors, such as CCL28 and CCR9 together with RAR¿ and RARß, which are involved in the gut homing of IgA-secreting cells. Moreover, cocoa modified the cross-talk between microbiota and intestinal cells as was detected by an altered TLR pattern. These overall effects in the intestine may explain the intestinal IgA down-regulatory effect after the consumption of a long-term cocoa-enriched diet.
Resumo:
Diabetic retinopathy is the leading cause of visual loss in individuals under the age of 55. Most investigations into the pathogenesis of diabetic retinopathy have been concentrated on the neural retina since this is where clinical lesions are manifested. Recently, however, various abnormalities in the structural and secretory functions of retinal pigment epithelium that are essential for neuroretina survival, have been found in diabetic retinopathy. In this context, here we study the effect of hyperglycemic and hypoxic conditions on the metabolism of a human retinal pigment epithelial cell line (ARPE-19) by integrating quantitative proteomics using tandem mass tagging (TMT), untargeted metabolomics using MS and NMR, and 13C-glucose isotopic labeling for metabolic tracking. We observed a remarkable metabolic diversification under our simulated in vitro hyperglycemic conditions of diabetes, characterized increased flux through polyol pathways and inhibition of the Krebs cycle and oxidative phosphorylation. Importantly, under low oxygen supply RPE cells seem to consume rapidly glycogen storages and stimulate anaerobic glycolysis. Our results therefore pave the way to future scenarios involving new therapeutic strategies addressed to modulating RPE metabolic impairment, with the aim of regulating structural and secretory alterations of RPE. Finally, this study shows the importance of tackling biomedical problems by integrating metabolomic and proteomics results.
Resumo:
Multicellular organisms rely on specialized tissues that allow for the controlled exchange of matter with their surrounding. In order to function properly, these tissues need to establish a tight connection between the individual cells to prevent uncontrolled passive diffusion across the extracellular space. In animals, these connections are called tight and adherens junctions and are a critical feature of epithelia. These connections, however, rely on direct protein-protein interaction of plasma membrane proteins of adjacent cells. Such a mechanism is not possible in plants due to the cell wall, which encases the individual cells. In order to absorb nutrients, while simultaneously preventing uncontrolled diffusion between cells, land plants have evolved the root endodermis, which is functionally equivalent to animal epithelia. Its cells are surrounded by a precisely localized and aligned, ring-like lignin deposition, called the Casparian strip, and therefore tightly connected between each other. Very little was known about the development of the endodermis and the Casparian strip until recently. In the meantime, however, we have identified a family of endodermis- specific proteins, the CASPs, which recruits extracellular proteins the specific Casparian strip membrane domain (CSD) to locally synthesize lignin in the cell wall. Yet, we hardly knew any specifics on how the CSD is initially defined and how the critically important CASPs are being recruited to it. We therefore conducted a forward genetic screen on the localization of CASPI-GFP in order to identify novel mutants, which lack a defined CSD. We identified 48 mutants, which fell into 15 different complementation groups. While some of the isolated genes had previously been identified through different approaches, nine novel genes, which had never been implicated in CSD development and maintenance, were identified. One of them, LORD OF THE RINGS 2 (.LOTR2) is described to greater detail in this work. LOTR2 encodes for EX070A1, a protein of the evolutionary conserved exocyst complex. This complex has frequently been implicated in various secretory processes across kingdoms. In Arabidopsis, it transiently defines the positioning of CASPI-GFP. We have performed a detailed analysis of the dynamics of EX070A1 and CASPI-GFP, including studies with other markers and propose a mechanism, by which the cytosolic EX070A1 transiently defines a plasma membrane domain to recruit transmembrane proteins, which then recruit extracellular enzymes for localized cell wall modification. Considering the ubiquitous expression of EX070A1, we think that this mechanism is potentially of importance not only for the endodermis and the Casparian strip but also for many other tissues, in which the cell wall becomes locally modified. In fact, many other tissues with secondary cell wall modifications contain proteins very similar to the CASPs. It will be interesting to see to which degree this mechanism is employed in other tissues. As for the endodermis, we have now identified the first gene, which is not specific to the endodermis but shows endodermis-specific dynamics. This might give us a better insight on how the plant modulates this ubiquitously present factor in a cell- or tissue-type specific manner. Considering the knowledge, mutants and tools, which are available to us for investigating the endodermis, the Casparian strip, the exocyst complex and EX070A1 might be just the right experimental system to address these questions. -- Les organismes multicellulaires dépendent des tissues spécialisé pour l'échange contrôlé entre eux et leur environnement. Pour leur bon fonctionnement, les cellules de ces tissus ont besoin d'être très étroitement assemblés afin de prévenir la diffusion non-contrôlée à travers l'espace extracellulaire. Chez les animaux, ces connexions sont appelées jonctions serrées et jonctions adhérentes. Ces jonctions dépendent des interactions directes entre les protéines des cellules voisines. Ceci n'est pas possible chez les plantes à cause de la paroi cellulaire qui recouvre chaque cellule individuellement. Pour absorber les nutriments et en même temps empêcher la diffusion non-contrôlé entre cellules, les plantes ont évolué 1'endoderme dans la racine, qui est fonctionnellement équivalent aux épithéliums des animaux. Les cellules de l'endoderme sont ceinturées par une déposition de lignine très précisément localisées comme un anneau et alignées entre les cellules, et qui, donc, connecte étroitement les cellules avoisinante: Le cadre de Caspary. Peu était connu sur le développement de l'endoderme et le cadre de Caspaiy jusqu'à il y a quelques années. Récemment, pourtant, nous avons identifié une famille de protéines spécifiques à l'endoderme, les CASPs, qui définissent le domaine membranaire du cadre de Caspaiy (CSD). Les CASPs recrutent les protéines extracellulaires nécessaire à la synthèse du cadre de Caspary vers une région limité dans la paroi cellulaire. Pourtant, on connaît très peu les processus spécifiques concernant la définition initiale du CSD et comment les CASPs, qui ont une importance cruciale, sont recrutées vers ce domaine. Par conséquent nous avons mené un crible génétique sur la localisation du CASPI- GFP, qui sert comme marqueur pour le CSD. Notre but étant d'isoler de nouveaux mutants affectés dans l'établissement du CSD. Nous avons identifié 48 mutants, en 15 groupes de complémentation. Bien que certains des gènes isolés étaient déjà impliqué dans la formation du cadre de Caspary, neuf nouveaux gènes n'ayant jamais été impliqués dans le développement ou la maintenance du CSD ont pu être identifiés. Un de ces gènes, LORD OF THE RINGS2 (LOTR2) sera décrit plus en détail dans cette étude. LOTR2 code pour EX070A1, qui est une protéine, du complexe exocyste. Ce complexe de protéines a très bien été conservé au cours de l'évolution. Il était souvent impliqué dans plusieurs processus de sécrétion dans toutes les branches de la vie. Chez Arabidopsis, EX070A1 définit la position du CSD d'une façon transitoire et recrute CASP1- GFP. Nous avons mené une analyse détaillée des dynamiques d'EX070Al et CASPI-GFP ainsi que, des études avec des autres mutants. Nous proposons un mécanisme, d'après lequel EX070A1, recruté du cytosol, définit un domaine dans la membrane plasmique pour localiser des protéines transmembranaires, ces dernières ensuite recruteront des enzymes extracellulaires pour la modification locale de la paroi cellulaire. Vu qu'EX070A1 est exprimé dans toute dans la plante, nous pensons que ce mécanisme est potentiellement important non seulement pour l'endoderme et le cadre de Caspary, mais aussi pour les autres tissus où la paroi cellulaire doit être localement modifiée. En effet, plusieurs autres tissus contiennent des protéines très similaires aux CASPs. Il serait intéressant de voir à quelle dégrée ce mécanisme est également utilisé dans ces tissues. En ce qui concerne l'endoderme, nous avons maintenant identifié le premier gène qui n'est pas exprimé spécifiquement dans l'endoderme, mais qui montre tout de même une dynamique caractéristique dans ce tissu. Il serait intéressant de voir comment la plante peut moduler ce facteur omniprésent d'une façon spécifique. Vu les connaissances, les mutants et les outils qu'on a maintenant à notre disposition, l'endoderme et son cadre de Caspary, le complexe exocyste et EX070A1 sont probablement des bons systèmes expérimentaux pour étudier ces questions. -- Identification des nouveaux facteurs pendant l'établissement du cadre de Caspary dans l'endoderme. Lothar Kalmbach, Département de Biologie Moléculaire Végétale (DBMV), Université de Lausanne. Comme tous les autres organismes multicellulaires, les plantes terrestres dépendent de tissus spécialisés pour l'échange contrôlé avec leur environnement. Ces tissus sont importants pour l'absorption des nutriments mais également pour éviter l'influx de composés toxiques. Chez les plantes, ce tissu se trouve dans la racine. C'est l'endoderme. Grâce au cadre de Caspary, qui permet une forte connexion entre les cellules au niveau de leur paroi, l'endoderme empêche les éléments toxiques d'entrer dans le système vasculaire. Depuis quelques années, nous comprenons de plus en plus la nature et la biosynthèse, ainsi que les protéines impliquées dans l'ancrage des enzymes à la membrane plasmique. Nous n'avons eu, par contre, aucune idée sur le mécanisme qui d'abord définit cet endroit dans la membrane plasmique. Nous avons mené un crible génétique sur la localisation de CASPI-GFP, une protéine, qui recrute les enzymes extracellulaires pour la synthèse du cadre de Caspary. Nous avons identifié plusieurs nouveaux gènes qui sont impliqués dans l'intégrité du cadre de Caspary. L'un de ces gènes est EX070A1, qui est un facteur ayant un rôle important lors de la sécrétion des protéines dans tous les organismes eukaryotes. Ces mutants sont gravement affectés au niveau du cadre de Caspary, mais surtout ils ne sont plus capables de localiser CASPI-GFP. Nous avons suivi la dynamique d'EX070Al et de CASP1-GFP en combinaison avec d'autres marqueurs. Nous avons pu montrer que l'accumulation d'EX070Al est spécifique pour l'endoderme et essentielle pour bien localiser CASPI-GFP et donc, le cadre de Caspary. Ces résultats nous aident à mieux comprendre le développement de l'endoderme mais peuvent potentiellement aussi être utilisés pour étudier les modifications de la paroi cellulaire dans d'autres cellules de la plante.
Resumo:
AbstractObjective:To describe the radiological findings of pulmonary tuberculosis in indigenous patients from the city of Dourados, MS, Brazil, according to age and sex.Materials and Methods:Chest radiographic images of 81 patients with pulmonary tuberculosis, acquired in the period from 2007 to 2010, were retrospectively analyzed by two radiologists in consensus for the presence or absence of changes. The findings in abnormal radiographs were classified according to the changes observed and they were correlated to age and sex. The data were submitted to statistical analysis.Results:The individuals' ages ranged from 1 to 97 years (mean: 36 years). Heterogeneous consolidations, nodules, pleural involvement and cavities were the most frequent imaging findings. Most patients (55/81 or 67.9%) were male, and upper lung and right lung were the most affected regions. Fibrosis, heterogeneous consolidations and involvement of the left lung apex were significantly more frequent in males (p < 0.05). Presence of a single type of finding at radiography was most frequent in children (p < 0.05).Conclusion:Based on the hypothesis that indigenous patients represent a population without genetically determined resistance to tuberculosis, the present study may enhance the knowledge about how the pulmonary form of this disease manifests in susceptible individuals.
Resumo:
This review discusses the methods used to prepare conductive polymers in confined environments. This spatial restriction causes formation of defect-free polymer chains in the interlayer as porous cavities of inorganic hosts. The properties of the different composites obtained are a synergist combination of the characteristics of the inorganic host and the polymer. This opens new perspectives for the preparation of these materials and widens its potential applications.