992 resultados para SECONDARY METABOLISM
Resumo:
The effects of a 7 d high-fructose diet (HFrD) or control diet on lipid metabolism were studied in a group of six healthy lean males. Plasma NEFA and beta-hydroxybutyrate concentrations, net lipid oxidation (indirect calorimetry) and exogenous lipid oxidation (13CO2 production) were monitored in basal conditions, after lipid loading (olive oil labelled with [13C]triolein) and during a standardised mental stress. Lactate clearance and the metabolic effects of an exogenous lactate infusion were also monitored. The HFrD lowered plasma concentrations of NEFA and beta-hydroxybutyrate as well as lipid oxidation in both basal and after lipid-loading conditions. In addition, the HFrD blunted the increase in plasma NEFA and exogenous lipid oxidation during mental stress. The HFrD also increased basal lactate concentrations by 31.8 %, and lactate production by 53.8 %, while lactate clearance remained unchanged. Lactate infusion lowered plasma NEFA with the control diet, and net lipid oxidation with both the HFrD and control diet. These results indicate that a 7 d HFrD markedly inhibits lipolysis and lipid oxidation. The HFrD also increases lactate production, and the ensuing increased lactate utilisation may contribute to suppress lipid oxidation.
Resumo:
The nuclear hormone receptors called PPARs (peroxisome proliferator-activated receptors alpha, beta, and gamma) regulate the peroxisomal beta-oxidation of fatty acids by induction of the acyl-CoA oxidase gene that encodes the rate-limiting enzyme of the pathway. Gel retardation and cotransfection assays revealed that PPAR alpha heterodimerizes with retinoid X receptor beta (RXR beta; RXR is the receptor for 9-cis-retinoic acid) and that the two receptors cooperate for the activation of the acyl-CoA oxidase gene promoter. The strongest stimulation of this promoter was obtained when both receptors were exposed simultaneously to their cognate activators. Furthermore, we show that natural fatty acids, and especially polyunsaturated fatty acids, activate PPARs as potently as does the hypolipidemic drug Wy 14,643, the most effective activator known so far. Moreover, we discovered that the synthetic arachidonic acid analogue 5,8,11,14-eicosatetraynoic acid is 100 times more effective than Wy 14,643 in the activation of PPAR alpha. In conclusion, our data demonstrate a convergence of the PPAR and RXR signaling pathways in the regulation of the peroxisomal beta-oxidation of fatty acids by fatty acids and retinoids.
Resumo:
Background: Post-surgical management of stage I seminoma includes: surveillance with repeated CT-scans and treatment reserved for those who relapse, or adjuvant treatment with either immediate radiation therapy (RT) or carboplatin. The cancer specific survival is close to 100%. Cure without long-term sequelae of treatment is the aim. Our goal is to estimate the risk of radiation-induced secondary cancers (SC) death from for patients undergoing S, adjuvant RT or adjuvant carboplatin (AC).Materials and Methods: We measured organ doses from CT scans (3 phases each one) of a seminoma patient who was part of the active surveillance strategy and from a man undergoing adjuvant RT 20-Gy and a 30-Gy salvage RT treatment to the para-aortic area using helical Intensity Modulated RT (Tomotherapy®) with accurate delineation of organs at risk and a CTV to PTV expansion of 1 cm. Effective doses to organs in mSv were estimated according to the tissue-weighting factors recommendations of the International Commission on Radiological Protection 103 (Ann ICRP 2007). We estimated SC incidence and mortality for a 10,000 people population based on the excess absolute risk model from the Biological Effects of Ionizing Radiation (BEIR) VII (Health Risk of Exposure to Low Levels of Ionizing Radiation, NCR, The National Academies Press Washington, DC, 2006) assuming a seminoma diagnosis at age 30, a total life expectancy of 80 years.Results: The nominal risk for a fatal secondary cancers was calculated 1.5% for 15 abdominal CT scans, 14.8% for adjuvant RT (20 Gy paraaortic field) and 22.2% for salvage RT (30 Gy). The calculation assumed that the risk of relapse on surveillance and adjuvant AC was 15% and 4% respectively and that all patients were salvaged at relapse with RT. n CT abdomen/Pelvis = secondary cancer % RT Dose and % receiving treatment = secondary cancer % Total secondary cancer risk in % Active surveillance 15 = 1.5% 30 Gy in 15% of pts = 3.3% 4.8 Adjuvant carboplatin 7 = 0.7% 30 Gy in 4% of pts = 0.88% 1.58 Adjuvant radiotherapy 7 = 0.7% 20 Gy in 100% of pts = 14.8% 15.5Conclusions: These data suggest that: 1) Adjuvant radiotherapy is harmful and should not anymore be regarded as a standard option for seminoma stage I. 2) AC seems to be an option to reduce radiation induced cancers. Limitations: the study does not consider secondary cancers due to chemotherapy with AC (unknown). The use of BEIR VII for risk modeling with higher doses of RT needs to be validated.
Resumo:
Introduction: Prior clozapine studies indicated no effects, mild inhibition or induction of valproic acid (VPA) on clozapine metabolism. The hypotheses that (i) VPA is a net inducer of clozapine metabolism, and (ii) smoking modifies this inductive effect were tested in a therapeutic drug monitoring study. Methods: After excluding strong inhibitors and inducers, 353 steady-state total clozapine (clozapine plus norclozapine) concentrations provided by 151 patients were analyzed using a random intercept linear model. Results: VPA appeared to be an inducer of clozapine metabolism since total plasma clozapine concentrations in subjects taking VPA were significantly lower (27% lower; 95% confidence interval, 14-39%) after controlling for confounding variables including smoking (35% lower, 28-56%). Discussion: Prospective studies are needed to definitively establish that VPA may (i) be an inducer of clozapine metabolism when induction prevails over competitive inhibition, and (ii) be an inducer even in smokers who are under the influence of smoking inductive effects on clozapine metabolism.
Resumo:
The aim of this study was to investigate the synergistic effects of endurance training and hypoxia on endurance performance in normoxic and hypoxic conditions (approximately 3000 m above sea level) as well as on lactate and glucose metabolism during prolonged exercise. For this purpose, 14 well-trained cyclists performed 12 training sessions in conditions of normobaric hypoxia (HYP group, n = 7) or normoxia (NOR group, n = 7) over 4 weeks. Before and after training, lactate and glucose turnover rates were measured by infusion of exogenous lactate and stable isotope tracers. Endurance performance was assessed during incremental tests performed in normoxia and hypoxia and a 40 km time trial performed in normoxia. After training, performance was similarly and significantly improved in the NOR and HYP groups (training, P < 0.001) in normoxic conditions. No further effect of hypoxic training was found on markers of endurance performance in hypoxia (training x hypoxia interaction, n.s.). In addition, training and hypoxia had no significant effect on lactate turnover rate. In contrast, there was a significant interaction of training and hypoxia (P < 0.05) on glucose metabolism, as follows: plasma insulin and glucose concentrations were significantly increased; glucose metabolic clearance rate was decreased; and the insulin to glucagon ratio was increased after training in the HYP group. In conclusion, our results show that, compared with training in normoxia, training in hypoxia has no further effect on endurance performance in both normoxic and hypoxic conditions or on lactate metabolic clearance rate. Additionally, these findings suggest that training in hypoxia impairs blood glucose regulation in endurance-trained subjects during exercise.
Resumo:
BACKGROUND AND AIMS: In a mixed-ploidy population, strong frequency-dependent mating will lead to the elimination of the less common cytotype, unless prezygotic barriers enhance assortative mating. However, such barriers favouring cytotype coexistence have only rarely been explored. Here, an assessment is made of the mechanisms involved in formation of mixed-ploidy populations and coexistence of diploid plants and their closely related allotetraploid derivates from the Centaurea stoebe complex (Asteraceae). METHODS: An investigation was made of microspatial and microhabitat distribution, life-history and fitness traits, flowering phenology, genetic relatedness of cytotypes and intercytotype gene flow (cpDNA and microsatellites) in six mixed-ploidy populations in Central Europe. KEY RESULTS: Diploids and tetraploids were genetically differentiated, thus corroborating the secondary origin of contact zones. The cytotypes were spatially segregated at all sites studied, with tetraploids colonizing preferentially drier and open microhabitats created by human-induced disturbances. Conversely, they were rare in more natural microsites and microsites with denser vegetation despite their superior persistence ability (polycarpic life cycle). The seed set of tetraploid plants was strongly influenced by their frequency in mixed-ploidy populations. Triploid hybrids originated from bidirectional hybridizations were extremely rare and almost completely sterile, indicating a strong postzygotic barrier between cytotypes. CONCLUSIONS: The findings suggest that tetraploids are later immigrants into already established diploid populations and that anthropogenic activities creating open niches favouring propagule introductions were the major factor shaping the non-random distribution and habitat segregation of cytotypes at fine spatial scale. Establishment and spread of tetraploids was further facilitated by their superior persistence through the perennial life cycle. The results highlight the importance of non-adaptive spatio-temporal processes in explaining microhabitat and microspatial segregation of cytotypes.
Resumo:
In the plant-beneficial, root-colonizing strain Pseudomonas fluorescens CHA0, the Gac/Rsm signal transduction pathway positively regulates the synthesis of biocontrol factors (mostly antifungal secondary metabolites) and contributes to oxidative stress response via the stress sigma factor RpoS. The backbone of this pathway consists of the GacS/GacA two-component system, which activates the expression of three small regulatory RNAs (RsmX, RsmY, RsmZ) and thereby counters translational repression exerted by the RsmA and RsmE proteins on target mRNAs encoding biocontrol factors. We found that the expression of typical biocontrol factors, that is, antibiotic compounds and hydrogen cyanide (involving the phlA and hcnA genes), was significantly lower at 35 degrees C than at 30 degrees C. The expression of the rpoS gene was affected in parallel. This temperature control depended on RetS, a sensor kinase acting as an antagonist of the GacS/GacA system. An additional sensor kinase, LadS, which activated the GacS/GacA system, apparently did not contribute to thermosensitivity. Mutations in gacS or gacA were epistatic to (that is, they overruled) mutations in retS or ladS for expression of the small RNAs RsmXYZ. These data are consistent with a model according to which RetS-GacS and LadS-GacS interactions shape the output of the Gac/Rsm pathway and the environmental temperature influences the RetS-GacS interaction in P. fluorescens CHA0.
Resumo:
We previously showed that exposure of 3D organotypic rat brain cell cultures to 1mM 2-methylcitrate (2-MCA) or 3-hydroxyglutarate (3- OHGA) every 12h over three days (DIV11-DIV14) results in ammonium accumulation and cell death. The aim of this study was to define the time course (every 24h) of the observed effects. Ammonium in culture medium already increased at DIV12 staying stable on the following days under 3-OHGA exposure, while it increased consecutively up to much higher levels under 2-MCA exposure. Lactate increase and glucose decrease were observed from DIV13 and DIV14, respectively. We conclude that ammonium accumulation precedes alterations of energy metabolism. As observed by immunohistochemistry glial cells were the predominant dying cells. Immunoblotting and immunohistochemistry with cell death specific markers (caspase-3, alpha-fodrin, LC3) showed that 2-MCA exposure significantly increased apoptosis on DIV14, but did not alter autophagy or necrosis. In contrast, 3-OHGA exposure substantially increased necrosis already from DIV13, while no change was observed for apoptosis and autophagy. In conclusion, ammonium accumulation, secondary disturbance of energy metabolism and glial cell death are involved in the neuropathogenesis ofmethylmalonic aciduria and glutaric aciduria type I. Interestingly, brain cells are dying by necrosis under 3-OHGA exposure and by apoptosis under 2-MCA exposure.
Resumo:
In this study we focused our attention on the behavior of four nuclear matrix proteins during the various stages of apoptosis in the HL-60 cell line exposed to the DNA topoisomerase I inhibitor, camptothecin. We have examined the following antigens by immunocytochemical techniques: (i) the 180-kDa nucleolar isoform of DNA topoisomerase II; (ii) a 126-kDa polypeptide of nuclear bodies; (iii) a 125-kDa protein; and (iv) a 160-kDa polypeptide which are known to be components of the matrix inner network. Indirect immunofluorescence experiments were performed to follow these nuclear matrix antigens during apoptosis. Moreover, the ultrastructural localization of both 125- and 160-kDa proteins was investigated by electron microscope immunocytochemistry with gold-conjugated secondary antibodies. While the antibody to the nucleolar isoform of DNA topoisomerase II gave a fluorescent pattern that was well-maintained until the late phases of apoptosis, the other three nuclear antigens showed marked modifications in their distribution. A common feature, particularly evident for 125- and 160-kDa proteins, was their absence from cap-shaped chromatin marginations, whereas they were present in the areas of remaining decondensed chromatin. The 126-kDa polypeptide concentrated progressively in an irregular mass at the opposite side of the crescentic caps and then broke up in fine spots. The 125- and 160-kDa proteins localized in the nucleolus and precisely within certain granules which are known to appear in the nucleolar area after camptothecin administration. These results show that, in addition to the well-known chromatin changes, nuclear organization undergoes other rearrangements during the apoptotic process.
Resumo:
Pseudomonas fluorescens CHA0 produces several secondary metabolites, e.g., the antibiotics pyoluteorin (Plt) and 2,4-diacetylphloroglucinol (Phl), which are important for the suppression of root diseases caused by soil-borne fungal pathogens. A Tn5 insertion mutant of strain CHA0, CHA625, does not produce Phl, shows enhanced Plt production on malt agar, and has lost part of the ability to suppress black root rot in tobacco plants and take-all in wheat. We used a rapid, two-step cloning-out procedure for isolating the wild-type genes corresponding to those inactivated by the Tn5 insertion in strain CHA625. This cloning method should be widely applicable to bacterial genes tagged with Tn5. The region cloned from P. fluorescens contained three complete open reading frames. The deduced gene products, designated PqqFAB, showed extensive similarities to proteins involved in the biosynthesis of pyrroloquinoline quinone (PQQ) in Klebsiella pneumoniae, Acinetobacter calcoaceticus, and Methylobacterium extorquens. PQQ-negative mutants of strain CHA0 were constructed by gene replacement. They lacked glucose dehydrogenase activity, could not utilize ethanol as a carbon source, and showed a strongly enhanced production of Plt on malt agar. These effects were all reversed by complementation with pqq+ recombinant plasmids. The growth of a pqqF mutant on ethanol and normal Plt production were restored by the addition of 16 nM PQQ. However, the Phl- phenotype of strain CHA625 was due not to the pqq defect but presumably to a secondary mutation. In conclusion, a lack of PQQ markedly stimulates the production of Plt in P. fluorescens.
Resumo:
This work aims to characterise the current autotrophic compartment of the Albufera des Grau coastal lagoon (Menorca, Balearic Islands) and to assess the relationship between the submerged macrophytes and the limnological parameters of the lagoon. During the study period the submerged vegetation was dominated by the macrophyte Ruppia cirrhosa, which formed dense extensive meadows covering 79% of the surface. Another macrophyte species, Potamogeton pectinatus, was also observed but only forming small stands near the rushing streams. Macroalgae were only occasionally observed. Macrophyte biomass showed a clear seasonal trend, with maximum values in July. The biomass of R. cirrhosa achieved 1760 g DW m-2, the highest biomass ever reported for this species in the literature. The seasonal production-decomposition cycle of the macrophyte meadows appears to drive the nutrient dynamics and carbon fluxes in the lagoon. Despite the significant biomass accumulation and the absence of a washout of nutrients and organic matter to the sea, the lagoon did not experience a dystrophic collapse. These results indicate that internal metabolism is more important than exchange processes in the lagoon.
Resumo:
The performance of mice expressing PDAPP (+/+ or +/-) was studied in the Morris place navigation task. Different lines of questions were investigated using PDAPP+/- mice in which the activity of the cytokine Tumor Necrosing Factor alpha (TNFalpha) was attenuated by chronic treatment with anti-TNF or deleting TNFalpha (TNF-/-). Two different categories of behavior were analyzed in adult (6 months) and middle aged (15 months) subjects. Classically, the cognitive performance was assessed from the escape efficacy and quantitative bias toward the training position in a Morris water maze. Second, stereotyped circling was quantified, along with more qualitative behavioral impairments such as self-mutilation or increased reactivity. Our results can be summarized as follows. (1) All of the PDAPP mice expressed reduced cognitive performance in the Morris task, but only those with a clear-cut amyloid burden in the hippocampus showed behavioral abnormalities such as stereotyped circling. (2) Chronic treatment with anti-TNF prevented the development of pathological circling in the 6-month-old mice but not in the 15-month-old mice and had no significant effect on amyloid burden. (3) The absence of TNFalpha prevented the development of stereotyped circling in 6- and 15-month-old mice but increased amyloid burden after 15 months. These data indicate that PDAPP mice express cognitive impairments disregarding absence of TNF. The pathological behavioral anomalies related to the PDAPP mutation seem reduced by treatments interfering with TNFalpha.
Resumo:
Children with unresolved brachial plexus palsy frequently develop a disabling internal rotation contracture of the shoulder. Several surgical options, including soft tissue procedures such as muscle releases and/or transfers, and bone operations such as humeral osteotomy are available to correct this deformity. This study describes the effect of subscapularis muscle release performed in isolation. Thirteen patients (5 boys, 8 girls) were reviewed at an average of 3.5 years after their surgery (range, 2-7 years). Their mean age at operation was 4.7 years (range, 1-8 years). Three children had C5-C6 palsies, 8 had C5-C7 palsies, and 2 had C5-C8 palsies. Postoperatively, patients presented significant gains in shoulder active lateral rotation (+49 degrees, from 5 to 54 degrees), active abduction (+30 degrees, from 63 to 93 degrees), active flexion (+46 degrees, from 98 to 144 degrees), and active extension (+23 degrees, from 7 to 30 degrees). Gains were also observed in passive range of motion, but of a lesser degree. Subscapularis muscle release is a procedure we found to have few significant complications and was highly effective in increasing active range of motion and restoring shoulder function.
Resumo:
OBJECTIVES: To analyze the effect of tight glycemic control with the use of intensive insulin therapy on cerebral glucose metabolism in patients with severe brain injury. DESIGN: Retrospective analysis of a prospective observational cohort. SETTING: University hospital neurologic intensive care unit. PATIENTS: Twenty patients (median age 59 yrs) monitored with cerebral microdialysis as part of their clinical care. INTERVENTIONS: Intensive insulin therapy (systemic glucose target: 4.4-6.7 mmol/L [80-120 mg/dL]). MEASUREMENTS AND MAIN RESULTS: Brain tissue markers of glucose metabolism (cerebral microdialysis glucose and lactate/pyruvate ratio) and systemic glucose were collected hourly. Systemic glucose levels were categorized as within the target "tight" (4.4-6.7 mmol/L [80-120 mg/dL]) vs. "intermediate" (6.8-10.0 mmol/L [121-180 mg/dL]) range. Brain energy crisis was defined as a cerebral microdialysis glucose <0.7 mmol/L with a lactate/pyruvate ratio >40. We analyzed 2131 cerebral microdialysis samples: tight systemic glucose levels were associated with a greater prevalence of low cerebral microdialysis glucose (65% vs. 36%, p < 0.01) and brain energy crisis (25% vs.17%, p < 0.01) than intermediate levels. Using multivariable analysis, and adjusting for intracranial pressure and cerebral perfusion pressure, systemic glucose concentration (adjusted odds ratio 1.23, 95% confidence interval [CI] 1.10-1.37, for each 1 mmol/L decrease, p < 0.001) and insulin dose (adjusted odds ratio 1.10, 95% CI 1.04-1.17, for each 1 U/hr increase, p = 0.02) independently predicted brain energy crisis. Cerebral microdialysis glucose was lower in nonsurvivors than in survivors (0.46 +/- 0.23 vs. 1.04 +/- 0.56 mmol/L, p < 0.05). Brain energy crisis was associated with increased mortality at hospital discharge (adjusted odds ratio 7.36, 95% CI 1.37-39.51, p = 0.02). CONCLUSIONS: In patients with severe brain injury, tight systemic glucose control is associated with reduced cerebral extracellular glucose availability and increased prevalence of brain energy crisis, which in turn correlates with increased mortality. Intensive insulin therapy may impair cerebral glucose metabolism after severe brain injury.