990 resultados para SCATTERING LENGTH
Resumo:
Biological/fisheries parameters (L sub(oo) M, F) are presented for four fish species (Gadiculus argenteus; Gaidropsarus mediterraneous; Symphurus ligulatus; Lepidorhombus boscii) as well as body length-weight and length-height relationships for 11 and 12 fish species, respectively, estimated from trawl samples collected using three different cod-ends (stretched mesh size: 14 mm and 20 mm diamond-shaped and 20 mm square-shaped) during 1993-1994, in the western Aegean and North Euboikos Gulf, Greece. The fisheries paramaters, estimated from length-frequency using the ELEFAN approach and software, are discussed in the light of recent information on the selectivity of the presently used trawl cod-end (14 mm diamond shaped)
Resumo:
The length–weight relationships of 22 species of deep-sea fishes inhabiting the continental slopes beyond 250 m depth along the West Coast of India are presented. The parameters a and b of the equation W=a Lb were estimated. The fish samples were collected from trawl surveys during 1999 to 2001 on board the FORV Sagar Sampada at a depth range of 250 to 600 m in the area between 7°N and 20°N latitude. The value of b ranged from 1.94 to 3.36.
Resumo:
The parameters a and b of the length-weight relationship of the form W = aL super(b) were computed for 40 species from tables/graphs presented in E. Balon's Fishes of Lake Kariba, Africa.
Resumo:
The length-weight relationship of 26 fish species belonging to 17 families obtained from the Gulf of Thailand was examined. As seven species were obtained from different survey periods and three were from two different locations, seasonal and geographic variations of the equation between body weight W and total length L, W = aL super(b), were examined. The b values of the 27 species were tested for their significant differences from the value of 3; this confirmed that a few species showed significant differences of b value from 3. It is suggested that the 'cube law (b = 3)' can be applied to the length-weight relationship of most fishes in the Gulf of Thailand, with a few exceptions. This was confirmed by the analysis of b values from 72 additional species from the South China Sea area.
Resumo:
The seasonally oscillating growth parameters and length-weight relationships for Scomber japonicus caught in the Gulf of Guayaquil, Ecuador, were determined based on length-frequency data from 1989 to 1996, using the FiSAT software package of Gayanilo et al. (1996). Estimates of growth parameters are in general agreement with previous studies on the same species. Results also imply that the growth of Scomber japonicus slows down during the cold season by approximately 50% with respect to the average growth. The mean value of the power b is significantly larger than 3, indicating that the model of allometric growth should be used for the length-weight relationship and calculation of the condition factor.
Resumo:
Growth of a temperate reefa-ssociated fish, the purple wrasse (Notolabrus fucicola), was examined from two sites on the east coast of Tasmania by using age- and length-based models. Models based on the von Bertalanffy growth function, in the standard and a reparameterized form, were constructed by using otolith-derived age estimates. Growth trajectories from tag-recaptures were used to construct length-based growth models derived from the GROTAG model, in turn a reparameterization of the Fabens model. Likelihood ratio tests (LRTs) determined the optimal parameterization of the GROTAG model, including estimators of individual growth variability, seasonal growth, measurement error, and outliers for each data set. Growth models and parameter estimates were compared by bootstrap confidence intervals, LRTs, and randomization tests and plots of bootstrap parameter estimates. The relative merit of these methods for comparing models and parameters was evaluated; LRTs combined with bootstrapping and randomization tests provided the most insight into the relationships between parameter estimates. Significant differences in growth of purple wrasse were found between sites in both length- and age-based models. A significant difference in the peak growth season was found between sites, and a large difference in growth rate between sexes was found at one site with the use of length-based models.
Resumo:
Body length measurement is an important part of growth, condition, and mortality analyses of larval and juvenile fish. If the measurements are not accurate (i.e., do not reflect real fish length), results of subsequent analyses may be affected considerably (McGurk, 1985; Fey, 1999; Porter et al., 2001). The primary cause of error in fish length measurement is shrinkage related to collection and preservation (Theilacker, 1980; Hay, 1981; Butler, 1992; Fey, 1999). The magnitude of shrinkage depends on many factors, namely the duration and speed of the collection tow, abundance of other planktonic organisms in the sample (Theilacker, 1980; Hay, 1981; Jennings, 1991), the type and strength of the preservative (Hay, 1982), and the species of fish (Jennings, 1991; Fey, 1999). Further, fish size affects shrinkage (Fowler and Smith, 1983; Fey, 1999, 2001), indicating that live length should be modeled as a function of preserved length (Pepin et al., 1998; Fey, 1999).
Resumo:
Reproductive data collected from porbeagle, shortfin mako, and blue sharks caught around New Zealand were used to estimate the median length at maturity. Data on clasper development, presence or absence of spermatophores or spermatozeugmata, uterus width, and pregnancy were collected by observers aboard tuna longline vessels. Direct maturity estimates were made for smaller numbers of sharks sampled at recreational fishing competitions. Some data sets were sparse, particularly over the vital maturation length range, but the availability of multiple indicators of maturity made it possible to develop estimates for both sexes of all three species. Porbeagle shark males matured at 140–150 cm fork length and females at about 170–180 cm. New Zealand porbeagles therefore mature at shorter lengths than they do in the North Atlantic Ocean. Shortfin mako males matured at 180–185 cm and females at 275 –285 cm. Blue shark males matured at about 190 –195 cm and females at 170–190 cm; however these estimates were hampered by small sample sizes, difficulty obtaining representative samples from a population segregated by sex and maturity stage, and maturation that occurred over a wide length range. It is not yet clear whether regional differences in median maturity exist for shortfin mako and
Resumo:
We consider estimation of mortality rates and growth parameters from length-frequency data of a fish stock and derive the underlying length distribution of the population and the catch when there is individual variability in the von Bertalanffy growth parameter L∞. The model is flexible enough to accommodate 1) any recruitment pattern as a function of both time and length, 2) length-specific selectivity, and 3) varying fishing effort over time. The maximum likelihood method gives consistent estimates, provided the underlying distribution for individual variation in growth is correctly specified. Simulation results indicate that our method is reasonably robust to violations in the assumptions. The method is applied to tiger prawn data (Penaeus semisulcatus) to obtain estimates of natural and fishing mortality.
Resumo:
Body size at gonadal maturity is described for females of the slipper lobster (Scyllarides squammosus) (Scyllaridae) and the endemic Hawaiian spiny lobster (Panulirus marginatus) (Palinuridae) based on microscopic examination of histological preparations of ovaries. These data are used to validate several morphological metrics (relative exopodite length, ovigerous condition) of functional sexual maturity. Relative exopodite length (“pleopod length”) produced consistent estimates of size at maturity when evaluated with a newly derived statistical application for estimating size at the morphometric maturation point (MMP) for the population, identified as the midpoint of a sigmoid function spanning the estimated boundaries of overlap between the largest immature and smallest adult animals. Estimates of the MMP were related to matched (same-year) characterizations of sexual maturity based on ovigerous condition — a more conventional measure of functional maturity previously used to characterize maturity for the two lobster species. Both measures of functional maturity were similar for the respective species and were within 5% and 2% of one another for slipper and spiny lobster, respectively. The precision observed for two shipboard collection series of pleopod-length data indicated that the method is reliable and not dependent on specialized expertise. Precision of maturity estimates for S. squammosus with the pleopod-length metric was similar to that for P. marginatus with any of the other measures (including conventional evidence of ovigerous condition) and greatly exceeded the precision of estimates for S. squammosus based on ovigerous condition alone. The two measures of functional maturity averaged within 8% of the estimated size at gonadal maturity for the respective species. Appendage-to-body size proportions, such as the pleopod length metric, hold great promise, particularly for species of slipper lobsters like S. squammosus for which there exist no other reliable conventional morphological measures of sexual maturity. Morphometric proportions also should be included among the factors evaluated when assessing size at sexual maturity in spiny lobster stocks; previously, these proportions have been obtained routinely only for brachyuran crabs within the Crustacea.
Resumo:
Through most of their annual migration, gray whales, Eschrichtius robustus, remain within 10 km of shore, but in the Southern California Bight many individuals migrate much farther from shore. This paper summarizes aerial survey and photogrammetric efforts to determine body lengths and temporal and spatial distributions of migratory gray whales in the southern portion of the Southern California Bight. Aerial surveys were flown along 13 east–west transects between lat. 32°35′N and 33°30′N during the southbound gray whale migratory seasons of 1988–90 in the Southern California Bight. Photogrammetry was used to obtain body length estimates of animals during some of the surveys. A total of 1,878 whales in 675 groups were sighted along 25,440 km of transect distance flown and 217 body lengths were measured. Using position and heading data, three major migratory pathways or corridors in the southern portion of the bight are defined. Those migrating offshore were split almost evenly between two corridors along the west sides of Santa Catalina and San Clemente Islands. These corridors converge on the mainland coast between San Diego and the United States–Mexico border. No whales larger than 11.5 m were photographed within 30 km of the mainland coast, suggesting that smaller, and presumably younger, whales use the coastal migratory corridor through the California Bight.
Resumo:
Weight-on-length (W-L) relationships for 2,482 dolphinfish, Coryphaena hippurus, and 1,161 wahoo, Acanthocybium solandri, were examined. Data on fork length, whole (round) weight, and sex were collected for dolphinfish at the Honolulu fish auction from March 1988 through November 1989. Unsexed weight and length data for wahoo were collected at the auction from July 1988 through November 1989. We also used sex specific weight and length data of 171 wahoo collected during 1977–1985 research cruises for analysis. Coefficients of W-L regressions were significantly different between the sexes for dolphinfish. Coefficients did not significantly differ between the sexes for wahoo based on research cruise data. In a general linear model evaluating month as a categorical factor, month was significant for female dolphinfish, male dolphinfish, and wahoo with sexes pooled. W-L and length-on-weight (L-W) relationships were fitted by nonlinear regression for all dolphinfish, female dolphinfish, male dolphinfish, and all wahoo sexes pooled. W-L relationships for monthly samples of female dolphinfish, male dolphinfish, and all wahoo with sexes pooled were also fitted by nonlinear regression. Predicted mean weight at length for wahoo was highest at the beginning of the spawning season in June and lowest after the spawning season in September. Maximum and minimum predicted mean weight at length for both sexes of dolphinfish did not correspond with the peak spawning period (March–May). Plausible migration models in conjunction with reproductive behavior were examined to explain the variability in monthly predicted mean weight at length for dolphinfish.
Resumo:
Measurements of adult marine fishes on the U.S. west coast are usually made using one of three methods: standard length, fork length, or total length. Each method has advantages and disadvantages. In this paper we attempt to determine whether one method is faster and/or more reliable than the other methods. We found that all three methods were comparable. There was no appreciable difference in the time it took to measure fish using the different methods. Fork length had the most reproducible results; however, it had the highest level of bias between researchers. We therefore suggest that selection of measurement type be based on what other researchers have used for the species under study. The best improvement in measurement reliability probably occurs by adequate training of personnel and not type of measurement used.