951 resultados para SCALING
Resumo:
In this paper, we have studied electroencephalogram (EEG) activity of schizophrenia patients, in resting eyes closed condition, with detrended fluctuation analysis (DFA). The DFA gives information about scaling and long-range correlations in time series. We computed DFA exponents from 30 scalp locations of 18 male neuroleptic-naIve, recent-onset schizophrenia (NRS) subjects and 15 healthy male control subjects. Our results have shown two scaling regions in all the scalp locations in all the subjects, with different slopes, corresponding to two scaling exponents. No significant differences between the groups were found with first scaling exponent (short-range). However, the second scaling exponent (long-range) were significantly lower in control subjects at all scalp locations (p<0.05, Kruskal-Wallis test). These findings suggest that the long-range scaling behavior of EEG is sensitive to schizophrenia, and this may provide an additional insight into the brain dysfunction in schizophrenia.
Resumo:
One of the scientific challenges of growing InN quantum dots (QDs), using Molecular beam epitaxy (MBE), is to understand the fundamental processes that control the morphology and distribution of QDs. A systematic manipulation of the morphology, optical emission, and structural properties of InN/Si (111) QDs is demonstrated by changing the growth kinetics parameters such as flux rate and growth time. Due to the large lattice mismatch, between InN and Si (similar to 8%), the dots formed from the Strannski-Krastanow (S-K) growth mode are dislocated. Despite the variations in strain (residual) and the shape, both the dot size and pair separation distribution show the scaling behavior. We observed that the distribution of dot sizes, for samples grown under varying conditions, follow the scaling function.
Resumo:
In this work, an attempt is made to gain a better understanding of the breakage of low-viscosity drops in turbulent flows by determining the dynamics of deformation of an inviscid drop in response to a pressure variation acting on the drop surface. Known scaling relationships between wavenumbers and frequencies, and between pressure fluctuations and velocity fluctuations in the inertial subrange are used in characterizing the pressure fluctuation. The existence of a maximum stable drop diameter d(max) follows once scaling laws of turbulent flow are used to correlate the magnitude of the disruptive forces with the duration for which they act. Two undetermined dimensionless quantities, both of order unity, appear in the equations of continuity, motion, and the boundary conditions in terms of pressure fluctuations applied on the surface. One is a constant of proportionality relating root-mean-square values of pressure and velocity differences between two points separated by a distance l. The other is a Weber number based on turbulent stresses acting on the drop and the resisting stresses in the drop due to interfacial tension. The former is set equal to 1, and the latter is determined by studying the interaction of a drop of diameter equal to d(max) with a pressure fluctuation of length scale equal to the drop diameter. The model is then used to study the breakage of drops of diameter greater than d(max) and those with densities different from that of the suspending fluid. It is found that, at least during breakage of a drop of diameter greater than d(max) by interaction with a fluctuation of equal length scale, a satellite drop is always formed between two larger drops. When very large drops are broken by smaller-length-scale fluctuations, highly deformed shapes are produced suggesting the possibility of further fragmentation due to instabilities. The model predicts that as the dispersed-phase density increases, d(max) decreases.
Resumo:
In the complex Ginzburg-Landau equation, we consider possible ''phase turbulent'' regimes, where asymptotic correlations are controlled by phase fluctuations rather than by topological defects. Conjecturing that the decay of such correlations is governed by the Kardar-Parisi-Zhang (KPZ) model of growing interfaces, we derive the following results: (1) A scaling ansatz implies that equal-time spatial correlations in 1d, 2d, and 3d decay like e(-Ax2 zeta), where A is a nonuniversal constant, and zeta=1/2 in 1d. (2) Temporal correlations decay as exp(-t(2 beta)h(t/L(z))), with the scaling law <(beta)over bar> = <(zeta)over bar>/z, where z = 3/2, 1.58..., and 1.66..., for d = 1,2, and 3 respectively. The scaling function h(y) approaches a constant as y --> 0, and behaves like y(2(beta-<(beta)over bar>)), for large y. If in 3d the associated KPZ model turns out to be in its weak-coupling (''smooth'') phase, then, instead of the above behavior, the CGLE exhibits rotating long-range order whose connected correlations decay like 1/x in space or 1/t(1/2) in time. (3) For system sizes, L, and times t respectively less than a crossover length, L(c), and time, t(c), correlations are governed by the free-field or Edwards-Wilkinson (EW) equation, rather than the KPZ model. In 1d, we find that L(c) is large: L(c) similar to 35,000; for L < L(c) we show numerical evidence for stretched exponential decay of temporal correlations with an exponent consistent with the EW value beta(EW)= 1/4.
Resumo:
The bending rigidity kappa of bilayer membranes was studied with coarse grained soft repulsive potentials using dissipative particle dynamics (DPD) simulations. Using a modified Andersen barostat to maintain the bilayers in a tensionless state, the bending rigidity was obtained from a Fourier analysis of the height fluctuations. From simulations carried out over a wide range of membrane thickness, the continuum scaling relation kappa proportional to d(2) was captured for both the L-alpha and L-beta phases. For membranes with 4 to 6 tail beads, the bending rigidity in the L-beta phase was found to be 10-15 times higher than that observed for the L-alpha phase. From the quadratic scalings obtained, a six fold increase in the area stretch modulus, k(A) was observed across the transition. The magnitude of increase in both kappa and k(A) from the L-alpha to the L-beta phase is consistent with current experimental observations in lipid bilayers and to our knowledge provides for the first time a direct evaluation of the mechanical properties in the L-beta phase.
Resumo:
We use the BBGKY hierarchy equations to calculate, perturbatively, the lowest order nonlinear correction to the two-point correlation and the pair velocity for Gaussian initial conditions in a critical density matter-dominated cosmological model. We compare our results with the results obtained using the hydrodynamic equations that neglect pressure and find that the two match, indicating that there are no effects of multistreaming at this order of perturbation. We analytically study the effect of small scales on the large scales by calculating the nonlinear correction for a Dirac delta function initial two-point correlation. We find that the induced two-point correlation has a x(-6) behavior at large separations. We have considered a class of initial conditions where the initial power spectrum at small k has the form k(n) with 0 < n less than or equal to 3 and have numerically calculated the nonlinear correction to the two-point correlation, its average over a sphere and the pair velocity over a large dynamical range. We find that at small separations the effect of the nonlinear term is to enhance the clustering, whereas at intermediate scales it can act to either increase or decrease the clustering. At large scales we find a simple formula that gives a very good fit for the nonlinear correction in terms of the initial function. This formula explicitly exhibits the influence of small scales on large scales and because of this coupling the perturbative treatment breaks down at large scales much before one would expect it to if the nonlinearity were local in real space. We physically interpret this formula in terms of a simple diffusion process. We have also investigated the case n = 0, and we find that it differs from the other cases in certain respects. We investigate a recently proposed scaling property of gravitational clustering, and we find that the lowest order nonlinear terms cause deviations from the scaling relations that are strictly valid in the linear regime. The approximate validity of these relations in the nonlinear regime in l(T)-body simulations cannot be understood at this order of evolution.
Resumo:
We present the details of a formalism for calculating spatially varying zero-frequency response functions and equal-time correlation functions in models of magnetic and mixed-valence impurities of metals. The method is based on a combination of perturbative, thermodynamic scaling theory [H. R. Krishna-murthy and C. Jayaprakash, Phys. Rev. B 30, 2806 (1984)] and a nonperturbative technique such as the Wilson renormalization group. We illustrate the formalism for the spin-1/2 Kondo problem and present results for the conduction-spin-density�impurity-spin correlation function and conduction-electron charge density near the impurity. We also discuss qualitative features that emerge from our calculations and discuss how they can be carried over to the case of realistic models for transition-metal impurities.
Resumo:
The problem of spurious increase in volume fraction of second-phase particles during computer simulations of coarsening is examined. The origin of this problem is traced to the use of too long a time step (used for numerical integration of growth rates with respect to time) which leads to small particles with large negative growth rates shrinking to negative radii at the end of the time step. Such a shrinkage to negative sizes has the effect of pumping solute into the system. It is therefore suggested that the length of the time step be chosen in accordance with the size of the smallest particle present in the system. It is shown that spurious increase in particle Volume has a significant effect on the particle size distributions in the scaling regime (making them broader and more skewed in the Lifshitz-Slyozov-Wagner model). Its effect on coarsening kinetics, however, is found to be small.
Resumo:
We investigate the dynamics of polymers whose solution configurations are represented by fractional Brownian walks. The calculation of the two dynamical quantities considered here, the longest relaxation time tau(r) and the intrinsic viscosity [eta], is formulated in terms of Langevin equations and is carried out within the continuum approach developed in an earlier paper. Our results for tau(r) and [eta] reproduce known scaling relations and provide reasonable numerical estimates of scaling amplitudes. The possible relevance of the work to the study of globular proteins and other compact polymeric phases is discussed.
Resumo:
The present work deals with an ultrasonic type of wave propagation characteristics of monolayer graphene on silicon (Si) substrate. An atomistic model of a hybrid lattice involving a hexagonal lattice of graphene and surface atoms of diamond lattice of Si is developed to identify the carbon-silicon bond stiffness. Properties of this hybrid lattice model is then mapped into a nonlocal continuum framework. Equivalent force constant due to Si substrate is obtained by minimizing the total potential energy of the system. For this equilibrium configuration, the nonlocal governing equations are derived to analyze the ultrasonic wave dispersion based on spectral analysis. From the present analysis we show that the silicon substrate affects only the flexural wave mode. The frequency band gap of flexural mode is also significantly affected by this substrate. The results also show that, the silicon substrate adds cushioning effect to the graphene and it makes the graphene more stable. The analysis also show that the frequency bang gap relations of in-plane (longitudinal and lateral) and out-of-plane (flexural) wave modes depends not only on the y-direction wavenumber but also on nonlocal scaling parameter. In the nonlocal analysis, at higher values of the y-directional wavenumber, a decrease in the frequency band gap is observed for all the three fundamental wave modes in the graphene-silicon system. The atoms movement in the graphene due to the wave propagation are also captured for all the tree fundamental wave modes. The results presented in this work are qualitatively different from those obtained based on the local analysis and thus, are important for the development of graphene based nanodevices such as strain sensor, mass and pressure sensors, atomic dust detectors and enhancer of surface image resolution that make use of the ultrasonic wave dispersion properties of graphene. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We show by numerical simulations that discretized versions of commonly studied continuum nonlinear growth equations (such as the Kardar-Parisi-Zhangequation and the Lai-Das Sarma-Villain equation) and related atomistic models of epitaxial growth have a generic instability in which isolated pillars (or grooves) on an otherwise flat interface grow in time when their height (or depth) exceeds a critical value. Depending on the details of the model, the instability found in the discretized version may or may not be present in the truly continuum growth equation, indicating that the behavior of discretized nonlinear growth equations may be very different from that of their continuum counterparts. This instability can be controlled either by the introduction of higher-order nonlinear terms with appropriate coefficients or by restricting the growth of pillars (or grooves) by other means. A number of such ''controlled instability'' models are studied by simulation. For appropriate choice of the parameters used for controlling the instability, these models exhibit intermittent behavior, characterized by multiexponent scaling of height fluctuations, over the time interval during which the instability is active. The behavior found in this regime is very similar to the ''turbulent'' behavior observed in recent simulations of several one- and two-dimensional atomistic models of epitaxial growth.
Resumo:
We review some advances in the theory of homogeneous, isotropic turbulence. Our emphasis is on the new insights that have been gained from recent numerical studies of the three-dimensional Navier Stokes equation and simpler shell models for turbulence. In particular, we examine the status of multiscaling corrections to Kolmogorov scaling, extended self similarity, generalized extended self similarity, and non-Gaussian probability distributions for velocity differences and related quantities. We recount our recent proposal of a wave-vector-space version of generalized extended self similarity and show how it allows us to explore an intriguing and apparently universal crossover from inertial- to dissipation-range asymptotics.
Resumo:
The velocity distribution function for the steady shear flow of disks (in two dimensions) and spheres (in three dimensions) in a channel is determined in the limit where the frequency of particle-wall collisions is large compared to particle-particle collisions. An asymptotic analysis is used in the small parameter epsilon, which is naL in two dimensions and na(2)L in three dimensions, where; n is the number density of particles (per unit area in two dimensions and per unit volume in three dimensions), L is the separation of the walls of the channel and a is the particle diameter. The particle-wall collisions are inelastic, and are described by simple relations which involve coefficients of restitution e(t) and e(n) in the tangential and normal directions, and both elastic and inelastic binary collisions between particles are considered. In the absence of binary collisions between particles, it is found that the particle velocities converge to two constant values (u(x), u(y)) = (+/-V, O) after repeated collisions with the wall, where u(x) and u(y) are the velocities tangential and normal to the wall, V = (1 - e(t))V-w/(1 + e(t)), and V-w and -V-w, are the tangential velocities of the walls of the channel. The effect of binary collisions is included using a self-consistent calculation, and the distribution function is determined using the condition that the net collisional flux of particles at any point in velocity space is zero at steady state. Certain approximations are made regarding the velocities of particles undergoing binary collisions :in order to obtain analytical results for the distribution function, and these approximations are justified analytically by showing that the error incurred decreases proportional to epsilon(1/2) in the limit epsilon --> 0. A numerical calculation of the mean square of the difference between the exact flux and the approximate flux confirms that the error decreases proportional to epsilon(1/2) in the limit epsilon --> 0. The moments of the velocity distribution function are evaluated, and it is found that [u(x)(2)] --> V-2, [u(y)(2)] similar to V-2 epsilon and -[u(x)u(y)] similar to V-2 epsilon log(epsilon(-1)) in the limit epsilon --> 0. It is found that the distribution function and the scaling laws for the velocity moments are similar for both two- and three-dimensional systems.
Resumo:
Present work shows the feasibility of decentralized energy options for the Tumkur district in India. Decentralized energy planning (DEP) involves scaling down energy planning to subnational or regional scales. The important aspect of the energy planning at decentralized level would be to prepare an area-based DEP to meet energy needs and development of alternate energy sources at least-cost to the economy and environment. The geographical coverage and scale reflects the level at which the analysis takes place, which is an important factor in determining the structure of models. In the present work, DEP modeling under different scenarios has been carried out for Tumkur district of India for the year 2020. DEP model is suitably scaled for obtaining the optimal mix of energy resources and technologies using a computer-based goal programming technique. The rural areas of the Tumkur district have different energy needs. Results show that electricity needs can be met by biomass gasifier technology, using biomass feedstock produced by allocating only 12% of the wasteland in the district at 8 t/ha/yr of biomass productivity. Surplus electricity can be produced by adopting the option of biomass power generation from energy plantations. The surplus electricity generated can be supplied to the grid. The sustainable development scenario is a least cost scenario apart from promoting self-reliance, local employment, and environmental benefits. (C) 2010 American Institute of Chemical Engineers Environ Prog, 30: 248-258, 2011
Resumo:
We report results of statistical and dynamic analysis of the serrated stress-time curves obtained from compressive constant strain-rate tests on two metallic glass samples with different ductility levels in an effort to extract hidden information in the seemingly irregular serrations. Two distinct types of dynamics are detected in these two alloy samples. The stress-strain curve corresponding to the less ductile Zr65Cu15Ni10Al10 alloy is shown to exhibit a finite correlation dimension and a positive Lyapunov exponent, suggesting that the underlying dynamics is chaotic. In contrast, for the more ductile Cu47.5Zr47.5Al5 alloy, the distributions of stress drop magnitudes and their time durations obey a power-law scaling reminiscent of a self-organized critical state. The exponents also satisfy the scaling relation compatible with self-organized criticality. Possible physical mechanisms contributing to the two distinct dynamic regimes are discussed by drawing on the analogy with the serrated yielding of crystalline samples. The analysis, together with some physical reasoning, suggests that plasticity in the less ductile sample can be attributed to stick-slip of a single shear band, while that of the more ductile sample could be attributed to the simultaneous nucleation of a large number of shear bands and their mutual interactions. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.