1000 resultados para Root Temperature
Resumo:
Sex determination is often seen as a dichotomous process: individual sex is assumed to be determined either by genetic (genotypic sex determination, GSD) or by environmental factors (environmental sex determination, ESD), most often temperature (temperature sex determination, TSD). We endorse an alternative view, which sees GSD and TSD as the ends of a continuum. Both effects interact a priori, because temperature can affect gene expression at any step along the sex-determination cascade. We propose to define sex-determination systems at the population- (rather than individual) level, via the proportion of variance in phenotypic sex stemming from genetic versus environmental factors, and we formalize this concept in a quantitative-genetics framework. Sex is seen as a threshold trait underlain by a liability factor, and reaction norms allow modeling interactions between genotypic and temperature effects (seen as the necessary consequences of thermodynamic constraints on the underlying physiological processes). As this formalization shows, temperature changes (due to e.g., climatic changes or range expansions) are expected to provoke turnovers in sex-determination mechanisms, by inducing large-scale sex reversal and thereby sex-ratio selection for alternative sex-determining genes. The frequency of turnovers and prevalence of homomorphic sex chromosomes in cold-blooded vertebrates might thus directly relate to the temperature dependence in sex-determination mechanisms.
Resumo:
The physical disector is a method of choice for estimating unbiased neuron numbers; nevertheless, calibration is needed to evaluate each counting method. The validity of this method can be assessed by comparing the estimated cell number with the true number determined by a direct counting method in serial sections. We reconstructed a 1/5 of rat lumbar dorsal root ganglia taken from two experimental conditions. From each ganglion, images of 200 adjacent semi-thin sections were used to reconstruct a volumetric dataset (stack of voxels). On these stacks the number of sensory neurons was estimated and counted respectively by physical disector and direct counting methods. Also, using the coordinates of nuclei from the direct counting, we simulate, by a Matlab program, disector pairs separated by increasing distances in a ganglion model. The comparison between the results of these approaches clearly demonstrates that the physical disector method provides a valid and reliable estimate of the number of sensory neurons only when the distance between the consecutive disector pairs is 60 microm or smaller. In these conditions the size of error between the results of physical disector and direct counting does not exceed 6%. In contrast when the distance between two pairs is larger than 60 microm (70-200 microm) the size of error increases rapidly to 27%. We conclude that the physical dissector method provides a reliable estimate of the number of rat sensory neurons only when the separating distance between the consecutive dissector pairs is no larger than 60 microm.
Resumo:
Selostus: Tasoskannerin ja digitaalisen kuva-analyysimenetelmän kalibrointi juurten morfologian kvantifioimiseksi
Resumo:
Light promotes the expression of PHYTOCHROME KINASE SUBSTRATE1 (PKS1) in the root of Arabidopsis thaliana, but the function of PKS1 in this organ is unknown. Unilateral blue light induced a negative root phototropic response mediated by phototropin 1 in wild-type seedlings. This response was absent in pks1 mutants. In the wild type, unilateral blue light enhanced PKS1 expression in the subapical region of the root several hours before bending was detectable. The negative phototropism and the enhanced PKS1 expression in response to blue light required phytochrome A (phyA). In addition, the pks1 mutation enhanced the root gravitropic response when vertically oriented seedlings were placed horizontally. The negative regulation of gravitropism by PKS1 occurred even in dark-grown seedlings and did not require phyA. Blue light also failed to induce negative phototropism in pks1 under reduced gravitational stimulation, indicating that the effect of pks1 on phototropism is not simply the consequence of the counteracting effect of enhanced gravitropism. We propose a model where the background level of PKS1 reduces gravitropism. After a phyA-dependent increase in its expression, PKS1 positively affects root phototropism and both effects contribute to negative curvature in response to unilateral blue light.
Resumo:
We find that even very low Ni doping levels of high-quality Bi2Sr2Ca1Cu2O8 single crystals strongly affect the transition temperature T(c). We also observed that T(c) is not related to the total Ni concentration, but only to that of Ni engaged in NiO-type bonds. By controlling the temperature during crystal growth, one can modify the relative weight of Ni in NiO-type bonds with respect to other configurations-and therefore T(c).
Resumo:
The northeastern portion of the Mont Blanc massif in western Switzerland is predominantly comprised of the granitic rocks of the Mont Blanc intrusive suit, and the Mont Blanc basement gneisses. Within these metamorphic rocks are a variety of sub-economic Fe skarns. The mineral assemblages and fluid inclusions from these rocks have been used to derive age, pressure, temperature and fluid composition constraints for two Variscan events. Metamorphic hornblendes within the assemblages from the basement amphibolites and iron sk:lms have been dated using Ar-40/Ar-39, and indicate that these metamorphic events have a minimum age of approximately 334 Ma. Garnet-hornblende-plagioclase thermobarometry and stable isotope data obtained from the basement amphibolites are consistent with metamorphic temperatures in the range 515 to 580 degrees C, and pressures ranging from 5 to 8 kbar. Garnet-hornblende-magnetite thermobarometry and fluid inclusion studies indicate that the iron skarns formed at slightly lower temperatures, ranging from 400 to 500 degrees C in the presence of saline fluids at formational pressures similar to those experienced by the basement amphibolites. Late Paleozoic minimum uplift rates and geothermal gradients calculated using these data and the presence of Ladinien ichnofossils are on the order of 0.32 mm/year and 20 degrees C/km respectively. These uplift rates and geothermal gradients differ from those obtained from the neighbouring Aiguilles Rouges massif and indicate that these two massifs experienced different metamorphic conditions during the Carboniferous and Permian periods. During the early to late Carboniferous period the relative depths of the two massifs were reversed with the Aiguilles Rouges being initially unroofed at a much greater rate than the Mont Blanc, but experiencing relatively slower uplift rates near the termination of the Variscan orogeny.
Resumo:
Neuronal subpopulations of dorsal root ganglion (DRG) cells in the chicken exhibit carbonic anhydrase (CA) activity. To determine whether CA activity is expressed by DRG cells maintained in in vitro cultures, dissociated DRG cells from 10-day-old chick embryos were cultured on a collagen substrate. The influence exerted by environmental factors on the enzyme expression was tested under various conditions of culture. Neuron-enriched cell cultures and mixed DRG-cell cultures (including numerous non-neuronal cells) were performed either in a defined medium or in a horse serum-supplemented medium. In all the tested conditions, subpopulations of cultured sensory neurons expressed CA activity in their cell bodies, while their neurites were rarely stained; in each case, the percentage of CA-positive neurons declined with the age of the cultures. The number and the persistence of neurons possessing CA activity as well as the intensity of the reaction were enhanced by addition of horse serum. In contrast, the expression of the neuronal CA activity was not affected by the presence of non-neuronal cells or by the rise of CO2 concentration. Thus, the appearance and disappearance of neuronal subpopulations expressing CA activity may be decisively influenced by factors contained in the horse serum. The loss of CA-positive neurons with time could result from a cell selection or from genetic repression. Analysis of the time curves does not support a preferential cell death of CA-positive neurons but suggests that the eventual conversion of CA-positive neurons into CA-negative neurons results from a loss of the enzyme activity. These results indicate that the phenotypic expression of cultured sensory neurons is dependent on defined environmental factors.
Resumo:
Selostus: Perunan ja perunahybridien jäätymisen ja fotoinhibition kestävyys
Resumo:
Objectives of this investigation were to measure the effects of moderate heat treatments (below the dehydroxylation temperature) on physical and chemical properties of a calcium-montmorillonite clay. Previous workers have noted the reduction in cation exchange capacity and swelling property after heating in the range 200 to 400°C, and have suggested several possible explanations, such as hysteresis effect, increased inter-layer attractions due to removal of inter-layer water, or changes in the disposition of inter-layer or layer surface ions. The liquid limits of Ca-montmorillonite were steadily decreased with increased temperature of treatment, levelling at about 450°C. The plastic limit decreased slightly up to 350°C, above which samples could no longer be rolled into threads. The gradual change is in contrast with sudden major changes noted for weight loss (maximum rates of change at l00°C and 500°C), glycol retention surface area (520°C), and d001 diffraction peak intensity (17.7 A spacing) and breadth after glycolation (530°C). Other properties showing more gradual reductions with heat treatment were amount of exchangeable calcium (without water soaking), cation exchange capacity by NH4AC method, and d001 intensity (21 A spacing) after storing at 100% r.h. one month and re-wetting with water. Previous water soaking allowed much greater release of fixed Ca++ up to 450°C. Similar results were obtained with cation exchange capacities when samples were treated with N CaCl2 solution. The 21.0 A peak intensity curve showed close similarity to the liquid limit and plastic index curves in the low temperature range, and an explanation is suggested.
Resumo:
Primary sensory neurons were grown under four conditions of culture. The influence of nonneuronal cells, horse serum or both was studied on the phenotypic expression of certain neuronal subpopulations. The number of neurons expressing acetylcholinesterase, alpha-bungarotoxin-binding sites or a high uptake capacity for glutamine was enhanced by nonneuronal cells. The horse serum increases the neuronal subpopulation exhibiting a carbonic anhydrase activity. Certain phenotypic changes fit conditions consistent with an epigenetic induction rather than a cell selection.
Resumo:
Many biotic and abiotic factors affect the persistence and activity of beneficial pseudomonads introduced into soil to suppress plant diseases. One such factor may be the presence of virulent bacteriophages that decimate the population of the introduced bacteria, thereby reducing their beneficial effect. We have isolated a lytic bacteriophage (phi)GP100) that specifically infects the biocontrol bacterium Pseudomonas fluorescens CHA0 and some closely related Pseudomonas strains. phiGP100 was found to be a double-stranded-DNA phage with an icosahedral head, a stubby tail, and a genome size of approximately 50 kb. Replication of phiGP100 was negatively affected at temperatures higher than 25 degrees C. phiGP100 had a negative impact on the population size and the biocontrol activity of P. fluorescens strain CHA0-Rif (a rifampicin-resistant variant of CHA0) in natural soil microcosms. In the presence of phiGP100, the population size of strain CHA0-Rif in soil and on cucumber roots was reduced more than 100-fold. As a consequence, the bacterium's capacity to protect cucumber against a root disease caused by the pathogenic oomycete Pythium ultimum was entirely abolished. In contrast, the phage affected neither root colonization and nor the disease suppressive effect of a phiDGP100-resistant variant of strain CHA0-Rif. To our knowledge, this study is the first to illustrate the potential of phages to impair biocontrol performance of beneficial bacteria released into the natural soil environment.
Resumo:
Soil solarization is a technique used for weed and plant disease control in regions with high levels of solar radiation. The effect of solarization (0, 3, 6, and 9 weeks) upon weed populations, carrot (Daucus carota L. cv. Brasília) yield and nematode infestation in carrot roots was studied in São Luís (2º35' S; 44º10' W), MA, Brazil, using transparent polyethylene films (100 and 150 mm of thickness). The maximum temperature at 5 cm of depth was about 10ºC warmer in solarized soil than in control plots. In the study 20 weed types were recorded. Solarization reduced weed biomass and density in about 50% of weed species, including Cyperus spp., Chamaecrista nictans var. paraguariensis (Chod & Hassl.) Irwin & Barneby, Marsypianthes chamaedrys (Vahl) O. Kuntze, Mitracarpus sp., Mollugo verticillata L., Sebastiania corniculata M. Arg., and Spigelia anthelmia L. Approximately 40% of species in the weed flora were not affected by soil mulching. Furthermore, seed germination of Commelina benghalensis L. was increased by soil solarization. Marketable yield of carrots was greater in solarized soil than in the unsolarized one. It was concluded that solarization for nine weeks increases carrot yield and is effective for controlling more than half of the weed species recorded. Mulching was not effective for controlling root-knot nematodes in carrot.