978 resultados para Robust Stochastic Optimization
Resumo:
Microstructure imaging from diffusion magnetic resonance (MR) data represents an invaluable tool to study non-invasively the morphology of tissues and to provide a biological insight into their microstructural organization. In recent years, a variety of biophysical models have been proposed to associate particular patterns observed in the measured signal with specific microstructural properties of the neuronal tissue, such as axon diameter and fiber density. Despite very appealing results showing that the estimated microstructure indices agree very well with histological examinations, existing techniques require computationally very expensive non-linear procedures to fit the models to the data which, in practice, demand the use of powerful computer clusters for large-scale applications. In this work, we present a general framework for Accelerated Microstructure Imaging via Convex Optimization (AMICO) and show how to re-formulate this class of techniques as convenient linear systems which, then, can be efficiently solved using very fast algorithms. We demonstrate this linearization of the fitting problem for two specific models, i.e. ActiveAx and NODDI, providing a very attractive alternative for parameter estimation in those techniques; however, the AMICO framework is general and flexible enough to work also for the wider space of microstructure imaging methods. Results demonstrate that AMICO represents an effective means to accelerate the fit of existing techniques drastically (up to four orders of magnitude faster) while preserving accuracy and precision in the estimated model parameters (correlation above 0.9). We believe that the availability of such ultrafast algorithms will help to accelerate the spread of microstructure imaging to larger cohorts of patients and to study a wider spectrum of neurological disorders.
Resumo:
The sampling scheme is essential in the investigation of the spatial variability of soil properties in Soil Science studies. The high costs of sampling schemes optimized with additional sampling points for each physical and chemical soil property, prevent their use in precision agriculture. The purpose of this study was to obtain an optimal sampling scheme for physical and chemical property sets and investigate its effect on the quality of soil sampling. Soil was sampled on a 42-ha area, with 206 geo-referenced points arranged in a regular grid spaced 50 m from each other, in a depth range of 0.00-0.20 m. In order to obtain an optimal sampling scheme for every physical and chemical property, a sample grid, a medium-scale variogram and the extended Spatial Simulated Annealing (SSA) method were used to minimize kriging variance. The optimization procedure was validated by constructing maps of relative improvement comparing the sample configuration before and after the process. A greater concentration of recommended points in specific areas (NW-SE direction) was observed, which also reflects a greater estimate variance at these locations. The addition of optimal samples, for specific regions, increased the accuracy up to 2 % for chemical and 1 % for physical properties. The use of a sample grid and medium-scale variogram, as previous information for the conception of additional sampling schemes, was very promising to determine the locations of these additional points for all physical and chemical soil properties, enhancing the accuracy of kriging estimates of the physical-chemical properties.
Resumo:
We present a procedure for the optical characterization of thin-film stacks from spectrophotometric data. The procedure overcomes the intrinsic limitations arising in the numerical determination of manyparameters from reflectance or transmittance spectra measurements. The key point is to use all theinformation available from the manufacturing process in a single global optimization process. The method is illustrated by a case study of solgel applications.
Resumo:
A computer-aided method to improve the thickness uniformity attainable when coating multiple substrates inside a thermal evaporation physical vapor deposition unit is presented. The study is developed for the classical spherical (dome-shaped) calotte and also for a plane sector reversible holder setup. This second arrangement is very useful for coating both sides of the substrate, such as antireflection multilayers on lenses. The design of static correcting shutters for both kinds of configurations is also discussed. Some results of using the method are presented as an illustration.
Resumo:
Semiclassical Einstein-Langevin equations for arbitrary small metric perturbations conformally coupled to a massless quantum scalar field in a spatially flat cosmological background are derived. Use is made of the fact that for this problem the in-in or closed time path effective action is simply related to the Feynman-Vernon influence functional which describes the effect of the ``environment,'' the quantum field which is coarse grained here, on the ``system,'' the gravitational field which is the field of interest. This leads to identify the dissipation and noise kernels in the in-in effective action, and to derive a fluctuation-dissipation relation. A tensorial Gaussian stochastic source which couples to the Weyl tensor of the spacetime metric is seen to modify the usual semiclassical equations which can be veiwed now as mean field equsations. As a simple application we derive the correlation functions of the stochastic metric fluctuations produced in a flat spacetime with small metric perturbations due to the quantum fluctuations of the matter field coupled to these perturbations.
Resumo:
We consider the classical stochastic fluctuations of spacetime geometry induced by quantum fluctuations of massless nonconformal matter fields in the early Universe. To this end, we supplement the stress-energy tensor of these fields with a stochastic part, which is computed along the lines of the Feynman-Vernon and Schwinger-Keldysh techniques; the Einstein equation is therefore upgraded to a so-called Einstein-Langevin equation. We consider in some detail the conformal fluctuations of flat spacetime and the fluctuations of the scale factor in a simple cosmological model introduced by Hartle, which consists of a spatially flat isotropic cosmology driven by radiation and dust.
Resumo:
In the first part of this paper, we show that the semiclassical Einstein-Langevin equation, introduced in the framework of a stochastic generalization of semiclassical gravity to describe the back reaction of matter stress-energy fluctuations, can be formally derived from a functional method based on the influence functional of Feynman and Vernon. In the second part, we derive a number of results for background solutions of semiclassical gravity consisting of stationary and conformally stationary spacetimes and scalar fields in thermal equilibrium states. For these cases, fluctuation-dissipation relations are derived. We also show that particle creation is related to the vacuum stress-energy fluctuations and that it is enhanced by the presence of stochastic metric fluctuations.
Resumo:
The semiclassical Einstein-Langevin equations which describe the dynamics of stochastic perturbations of the metric induced by quantum stress-energy fluctuations of matter fields in a given state are considered on the background of the ground state of semiclassical gravity, namely, Minkowski spacetime and a scalar field in its vacuum state. The relevant equations are explicitly derived for massless and massive fields arbitrarily coupled to the curvature. In doing so, some semiclassical results, such as the expectation value of the stress-energy tensor to linear order in the metric perturbations and particle creation effects, are obtained. We then solve the equations and compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. In the conformal field case, explicit results are obtained. These results hint that gravitational fluctuations in stochastic semiclassical gravity have a non-perturbative behavior in some characteristic correlation lengths.
Resumo:
Long-term preservation of bioreporter bacteria is essential for the functioning of cell-based detection devices, particularly when field application, e.g., in developing countries, is intended. We varied the culture conditions (i.e., the NaCl content of the medium), storage protection media, and preservation methods (vacuum drying vs. encapsulation gels remaining hydrated) in order to achieve optimal preservation of the activity of As (III) bioreporter bacteria during up to 12 weeks of storage at 4 degrees C. The presence of 2% sodium chloride during the cultivation improved the response intensity of some bioreporters upon reconstitution, particularly of those that had been dried and stored in the presence of sucrose or trehalose and 10% gelatin. The most satisfying, stable response to arsenite after 12 weeks storage was obtained with cells that had been dried in the presence of 34% trehalose and 1.5% polyvinylpyrrolidone. Amendments of peptone, meat extract, sodium ascorbate, and sodium glutamate preserved the bioreporter activity only for the first 2 weeks, but not during long-term storage. Only short-term stability was also achieved when bioreporter bacteria were encapsulated in gels remaining hydrated during storage.
Resumo:
In inflationary cosmological models driven by an inflaton field the origin of the primordial inhomogeneities which are responsible for large-scale structure formation are the quantum fluctuations of the inflaton field. These are usually calculated using the standard theory of cosmological perturbations, where both the gravitational and the inflaton fields are linearly perturbed and quantized. The correlation functions for the primordial metric fluctuations and their power spectrum are then computed. Here we introduce an alternative procedure for calculating the metric correlations based on the Einstein-Langevin equation which emerges in the framework of stochastic semiclassical gravity. We show that the correlation functions for the metric perturbations that follow from the Einstein-Langevin formalism coincide with those obtained with the usual quantization procedures when the scalar field perturbations are linearized. This method is explicitly applied to a simple model of chaotic inflation consisting of a Robertson-Walker background, which undergoes a quasi-de Sitter expansion, minimally coupled to a free massive quantum scalar field. The technique based on the Einstein-Langevin equation can, however, deal naturally with the perturbations of the scalar field even beyond the linear approximation, as is actually required in inflationary models which are not driven by an inflaton field, such as Starobinsky¿s trace-anomaly driven inflation or when calculating corrections due to nonlinear quantum effects in the usual inflaton driven models.
Resumo:
Coalescing compact binary systems are important sources of gravitational waves. Here we investigate the detectability of this gravitational radiation by the recently proposed laser interferometers. The spectral density of noise for various practicable configurations of the detector is also reviewed. This includes laser interferometers with delay lines and Fabry-Prot cavities in the arms, both in standard and dual recycling arrangements. The sensitivity of the detector in all those configurations is presented graphically and the signal-to-noise ratio is calculated numerically. For all configurations we find values of the detector's parameters which maximize the detectability of coalescing binaries, the discussion comprising Newtonian- as well as post-Newtonian-order effects. Contour plots of the signal-to-noise ratio are also presented in certain parameter domains which illustrate the interferometer's response to coalescing binary signals.
Resumo:
We have analyzed the effects of the addition of external noise to nondynamical systems displaying intrinsic noise, and established general conditions under which stochastic resonance appears. The criterion we have found may be applied to a wide class of nondynamical systems, covering situations of different nature. Some particular examples are discussed in detail.
Resumo:
We present a class of systems for which the signal-to-noise ratio always increases when increasing the noise and diverges at infinite noise level. This new phenomenon is a direct consequence of the existence of a scaling law for the signal-to-noise ratio and implies the appearance of stochastic resonance in some monostable systems. We outline applications of our results to a wide variety of systems pertaining to different scientific areas. Two particular examples are discussed in detail.