913 resultados para Robot soccer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim has been to review the literature about the risk factors of hamstring injury in soccer from a biomechanical point of view. METHODOLOGY. Data bases of bibliography references were Medline, Scopus and SportDiscuss. RESULTS AND DISCUSSION. Many prospective studies have shown that the previous injury is the greatest risk factor of sustaining the injury. However the primary causes of the injury are unclear in soccer. A lack of hamstring flexibility has been one of the main injury risk factors with controversies on the results. Imbalance of isokinetic force is a risk factor but electrical coactivation of all muscles participating during knee flexion and extension are unknown in football. While the importance of lumbopelvic-hamstrings muscles synchronization during running seems to be crucial for understanding the risk of injury, no research has been developed in this topic in football. CONCLUSIONS. More research using new data recording procedures as Dynamic Scanners, Surface EMG, Inverse Dynamic Analysis are needed. The analysis of more specific movements as running, kicking or jumping is clearly required. Managers, coaches, physical trainers, physiotherapists, sport physicians and researchers should work together in order to improve the injury prevention and rehabilitation programs of football players. Key Words: sports biomechanics, soccer, hamstring injury, risk factors

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Las lesiones musculares del muslo tienen una gran incidencia en el fútbol. El objetivo del estudio ha sido desarrollar un nuevo procedimiento para evaluar el efecto de las lesiones de isquiotibiales en los golpeos con el pie s en el fútbol utilizando los principios de la dinámica inversa. El trabajo se ha centrado en la evaluación de la diferencia entre sujetos que habían sufrido la lesión en los últimos 5 años y los que no. Se analizaron 17 jugadores de fútbol profesionales realizando cinco tiros con el empeine y cinco con el interior del pie. Los movimientos se registraron mediante una plataforma de fuerza y un sistema de captura de movimiento Vicon funcionando a 500Hz. Los participantes también tomaron parte en una prueba de isocinético en la que se midió el torque isocinético en 60 º/s y 120 º/s. Se observaron diferencias significativas en los parámetros cinemáticos y cinéticos entre los dos grupos (lesionados y no lesionados) en la fase posterior del golpeo y en el instante de máxima flexión de cadera. No se encontraron diferencias significativas entre los dos grupos en la prueba isocinética tradicional. Estos resultados indican que el procedimiento empleado probablemente podría ser muy útil en la evaluación del efecto de las lesiones de isquiotibiales en el fútbol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En esta presentación se exponen la arquitectura general y el estado actual de desarrollo del sistema CLARK. Dicho sistema tiene como objetivo el despliegue de un asistente robótico para ayudar a un médico en la realización de procedimientos CGA (Comprehensive Geriatric Assessment), de forma que ciertas tareas, tales como la realización de cuestionarios o pruebas de movimiento, puedan ser realizadas por el robot de forma paralela al resto del procedimiento CGA, aumentando así su eficiencia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diseñar y construir un robot acuático que destruya la presencia de larvas o pupas de mosquitos en contenedores de agua. Se construyó y se diseñó un robot con materiales reciclables construido con tubos de cañería PVC, lupa, sensores de luz y barrera, motor de fuente 110 v, resistencias, LCR, cargador 9 v y focos led, para que destruya larvas de mosquitos en un contenedor de agua. Como resultado hay una cero prevalencia de índice larvario porque el robot detecta presencia larvaria con sensores y rayos laser activándose automáticamente con el efecto de succión y destrucción larvas en su interior eliminándolas desechas al utilizar filtros de 10 micras y aspas metálicas, el robot se activa por cinco a diez minutos y se apaga automáticamente hasta esperar la alarma otra vez según disposición de larvas. Conclusión el uso del robot acuático en contenedores de agua no se encuentra índices larvarios, así como pupas, que puede ser utilizado como control antilarvario para el combate transmisor de Dengue, Zika, Chikungunya entre otros.
Design and build an aquatic robot to destroy the presence of larvae or pupae of mosquitoes in water containers. It was built and a robot with recyclables built with tubes pipe PVC, magnifier, light sensors and barrier, engine power 110 v, resistors, LCR, charger 9 vy spotlights led, to destroy mosquito larvae was designed in a container of water. As a result there is a zero prevalence Larval rate because the robot detects larval presence sensors and lasers automatically activated with the suction effect and larvae destruction their killing the inner cast off using filters of 10 microns and metal blades, the robot is activated by five to ten minutes to wait automatically turns off the alarm again available as larvae. Conclusion use water in water containers robot is not larval indices and pupae, which can be used as anti larval control for transmitter combat Dengue, Zika, Chikungunya among others.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes the Robot Vision challenge, a competition that evaluates solutions for the visual place classification problem. Since its origin, this challenge has been proposed as a common benchmark where worldwide proposals are measured using a common overall score. Each new edition of the competition introduced novelties, both for the type of input data and subobjectives of the challenge. All the techniques used by the participants have been gathered up and published to make it accessible for future developments. The legacy of the Robot Vision challenge includes data sets, benchmarking techniques, and a wide experience in the place classification research that is reflected in this article.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we describe a semantic localization dataset for indoor environments named ViDRILO. The dataset provides five sequences of frames acquired with a mobile robot in two similar office buildings under different lighting conditions. Each frame consists of a point cloud representation of the scene and a perspective image. The frames in the dataset are annotated with the semantic category of the scene, but also with the presence or absence of a list of predefined objects appearing in the scene. In addition to the frames and annotations, the dataset is distributed with a set of tools for its use in both place classification and object recognition tasks. The large number of labeled frames in conjunction with the annotation scheme make this dataset different from existing ones. The ViDRILO dataset is released for use as a benchmark for different problems such as multimodal place classification and object recognition, 3D reconstruction or point cloud data compression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este artículo describe la adquisición de barridos tridimensionales (3D) nivelados en el robot móvil Andábata sin necesidad de detener su movimiento. Para ello, la computadora de Andábata debe integrar cada uno de los rangos láser, adquiridos con unos determinados ángulos de cabeceo y guiñada, con la información odométrica y las medidas de inclinación del vehículo para producir coordenadas Cartesianas niveladas referenciadas al inicio de cada barrido. Todo ello se ha realizado bajo el sistema operativo de robots ROS con la ayuda de paquetes estándard. El correcto funcionamiento de este esquema local de Localización y Modelado Simultáneos (SLAM) se ha comprobado experimentalmente sobre terreno inclinado.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the framework of basic psychological needs theory (Deci & Ryan, 2000), multilevel structural equation modeling (MSEM) with a time-lagged design was used to test a mediation model examining the relationship between perceptions of coaches’ interpersonal styles (autonomy supportive and controlling), athletes’ basic psychological needs (satisfaction and thwarting), and indicators of well-being (subjective vitality) and ill-being (burnout), estimating separately between and within effects. The participants were 597 Spanish male soccer players aged between 11 and 14 years (M = 12.57, SD = 0.54) from 40 teams who completed a questionnaire package at two time points in a competitive season. Results revealed that at the individual level, athletes’ perceptions of autonomy support positively predicted athletes’ need satisfaction (autonomy, competence, and relatedness), whereas athletes’ perceptions of controlling style positively predicted athletes’ need thwarting (autonomy, competence, and relatedness). In turn, all three athletes’ need satisfaction dimensions predicted athletes’ subjective vitality and burnout (positively and negatively, respectively), whereas competence thwarting negatively predicted subjective vitality and competence and relatedness positively predicted burnout. At the team level, team perceptions of autonomy supportive style positively predicted team autonomy and relatedness satisfaction. Mediation effects only appeared at the individual level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the most popular sports globally, soccer has seen a rise in the demands of the game over recent years. An increase in intensity and playing demands, coupled with growing social and economic pressures on soccer players means that optimal preparation is of paramount importance. Recent research has found the modern game, depending on positional role, to consist of approximately 60% more sprint distance in the English Premier League, which was also found to be the case for frequency and success of discrete technical actions (Bush et al., 2015). As a result, the focus on soccer training and player preparedness is becoming more prevalent in scientific research. By designing the appropriate training load, and thus periodization strategies, the aim is to achieve peak fitness in the most efficient way, whilst minimising the risk of injury and illness. Traditionally, training intensity has been based on heart rate responses, however, the emergence of tracking microtechnology such as global positioning system (GPS) and inertial sensors are now able to further quantify biomechanical load as well as physiological stress. Detailed pictures of internal and external loading indices such as these then combine to produce a more holistic view of training load experience by the player during typical drills and phases of training in soccer. The premise of this research is to gain greater understanding of the physical demands of common training methodologies in elite soccer to support optimal match performance. The coaching process may then benefit from being able to prescribe the most effective training to support these. The first experimental chapter in this thesis began by quantify gross training loads of the pre-season and in-season phases in soccer. A broader picture of the training loads inherent in these distinct phases brought more detail as to the type and extent of external loading experienced by soccer players at these times, and how the inclusion of match play influences weekly training rhythms. Training volume (total distance) was found to be high at the start compared to the end of pre-season (37 kilometres and 28 kilometres), where high cardiovascular loads were attained as part of the conditioning focus. This progressed transiently, however, to involve higher-speed, acceleration and change-of-direction stimuli at the end of pre-season compared to the start and to that in-season (1.18 kilometres, 0.70 kilometres and 0.42 kilometres high-intensity running; with 37, 25 and 23 accelerations >3m/s2 respectively) . The decrease in volume and increase in maximal anaerobic activity was evident in the training focus as friendly matches were introduced before the competitive season. The influence of match-play as being a large physical dose in the training week may then determine the change in weekly periodisation and how resulting training loads applied and tapered, if necessary. The focus of research was then directed more specifically to the most common mode of training in soccer, that also featured regularly in the pre-season period in the present study, small-sided games (SSG). The subsequent studies examined numerous manipulations of this specific form of soccer conditioning, such as player numbers as well as absolute and relative playing space available. In contrast to some previous literature, changing the number of players did not seem to influence training responses significantly, although playing format in the possession style brought about larger effects for heart rate (89.9%HRmax) and average velocity (7.6km/h-1). However, the following studies (Chapters 5, 6 and 7) revealed a greater influence of relative playing space available to players in SSG. The larger area at their disposal brought about greater aerobic responses (~90%HRmax), by allowing higher average and peak velocities (>25km/h-1), as well as greater distance acceleration behaviour at greater thresholds (>2.8m/s2). Furthermore, the data points towards space as being a large determinant in strategy of the player in small-sided games (SSG), subsequently shaping their movement behaviour and resulting physical responses. For example, higher average velocities in a possession format (8km/h-1) reflects higher work rate and heart rate load but makes achieving significant neuromuscular accelerations at a high level difficult given higher starting velocities prior to the most intense accelerations (4.2km/h-1). By altering space available and even through intentional numerical imbalances in team numbers, it may be easier for coaches to achieve the desired stimulus for the session or individual player, whether that is for aerobic and neuromuscular conditioning. Large effects were found for heart rate being higher in the underloaded team (85-90%HRmax) compared to the team with more players (80-85%HRmax) as well as for RPE (5AU versus 7AU). This was also apparent for meterage and therefore average velocity. It would also seem neuromuscular load through high acceleration and deceleration efforts were more pronounced with less numbers (given the need to press and close down opponents, and in a larger area relative to the number of players on the underloaded team. The peak accelerations and deceleration achieved was also higher when playing with less players (3-6.2m/s2 and 3-6.1m/s2) Having detailed ways in which to reach desired physical loading responses in common small training formats, Chapter 8 compared SSG to larger 9v9 formats with full-size 11v11 friendly matches. This enabled absolute and relative comparisons to be made and to understand the extent to which smaller training formats are able to replicate the required movements to be successful in competition. In relative terms, it was revealed that relative acceleration distance and Player Load were higher in smaller 4v4 games than match-play (1.1m.min-1 and 0.3m.min-1 >3m/s2; 16.9AU versus 12AU). Although the smallest format did not replicate the high-velocity demands of matches, the results confirmed their efficacy in providing significant neuromuscular load during the training week, which may then be supplemented by high-intensity interval running in order to gain exposure to more maximal speed work. In summary, the data presented provide valuable information from GPS and inertial sensor microtechnology which may then be used to understand training better to manipulate types of load according to physical conditioning objectives. For example, a library of resources to direct planning of drills of varying cardiovascular, neuromuscular and perceptual load can be created to give more confidence in session outcomes. Combining external and internal load data of common soccer training drills, and their application across different phases and training objectives may give coaches a powerful tool to plan and periodize training.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to identify how pitch area-restrictions affects the tactical behavior, physical and physiological performances of players during soccer large-sided games. A 10 vs. 9 large-sided game was performed under three experimental conditions: (i) restricted-spacing, the pitch was divided into specific areas where players were assigned and they should not leave it; (ii) contiguous-spacing, the pitch was divided into specific areas where the players were only allowed to move to a neighboring one; (iii) free-spacing, the players had no restrictions in space occupation. The positional data were used to compute players’ spatial exploration index and also the distance, coefficient of variation, approximate entropy and frequency of near-in-phase displacements synchronization of players’ dyads formed by the outfield teammates. Players’ physical and physiological performances were assessed by the distance covered at different speed categories, game pace and heart rate. Most likely higher values were found in players’ spatial exploration index under free-spacing conditions. The synchronization between dyads’ displacements showed higher values for contiguous-spacing and free-spacing conditions. In contrast, for the jogging and running intensity zones, restricted-spacing demanded a moderate effect and most likely decrease compared to other scenarios (~20-50% to jogging and ~60-90% to running). Overall, the effects of limiting players’ spatial exploration greatly impaired the co-adaptation between teammates’ positioning while decreasing the physical and physiological performances. These results allow for a better understanding of players’ decision-making process according to specific task rules and can be relevant to enrich practice task design, such that coaches acknowledge the differential effect by using specific pitch-position areas restrictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several decision and control tasks in cyber-physical networks can be formulated as large- scale optimization problems with coupling constraints. In these "constraint-coupled" problems, each agent is associated to a local decision variable, subject to individual constraints. This thesis explores the use of primal decomposition techniques to develop tailored distributed algorithms for this challenging set-up over graphs. We first develop a distributed scheme for convex problems over random time-varying graphs with non-uniform edge probabilities. The approach is then extended to unknown cost functions estimated online. Subsequently, we consider Mixed-Integer Linear Programs (MILPs), which are of great interest in smart grid control and cooperative robotics. We propose a distributed methodological framework to compute a feasible solution to the original MILP, with guaranteed suboptimality bounds, and extend it to general nonconvex problems. Monte Carlo simulations highlight that the approach represents a substantial breakthrough with respect to the state of the art, thus representing a valuable solution for new toolboxes addressing large-scale MILPs. We then propose a distributed Benders decomposition algorithm for asynchronous unreliable networks. The framework has been then used as starting point to develop distributed methodologies for a microgrid optimal control scenario. We develop an ad-hoc distributed strategy for a stochastic set-up with renewable energy sources, and show a case study with samples generated using Generative Adversarial Networks (GANs). We then introduce a software toolbox named ChoiRbot, based on the novel Robot Operating System 2, and show how it facilitates simulations and experiments in distributed multi-robot scenarios. Finally, we consider a Pickup-and-Delivery Vehicle Routing Problem for which we design a distributed method inspired to the approach of general MILPs, and show the efficacy through simulations and experiments in ChoiRbot with ground and aerial robots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this project an optimal pose selection method for the calibration of an overconstrained Cable-Driven Parallel robot is presented. This manipulator belongs to a subcategory of parallel robots, where the classic rigid "legs" are replaced by cables. Cables are flexible elements that bring advantages and disadvantages to the robot modeling. For this reason, there are many open research issues, and the calibration of geometric parameters is one of them. The identification of the geometry of a robot, in particular, is usually called Kinematic Calibration. Many methods have been proposed in the past years for the solution of the latter problem. Although these methods are based on calibration using different kinematic models, when the robot’s geometry becomes more complex, their robustness and reliability decrease. This fact makes the selection of the calibration poses more complicated. The position and the orientation of the endeffector in the workspace become important in terms of selection. Thus, in general, it is necessary to evaluate the robustness of the chosen calibration method, by means, for example, of a parameter such as the observability index. In fact, it is known from the theory, that the maximization of the above mentioned index identifies the best choice of calibration poses, and consequently, using this pose set may improve the calibration process. The objective of this thesis is to analyze optimization algorithms which aim to calculate an optimal choice of poses both in quantitative and qualitative terms. Quantitatively, because it is of fundamental importance to understand how many poses are needed. Not necessarily a greater number of poses leads to a better result. Qualitatively, because it is useful to understand if the selected combination of poses actually gives additional information in the process of the identification of the parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L’obbiettivo di questo elaborato di tesi è quello di eseguire uno studio di fattibilità per l’applicazione della tecnologia dei robot a cavi in ambito navale e della Difesa. Il lavoro è stato svolto presso l’azienda Calzoni di Calderara di Reno. In particolare, si è analizzata la possibilità di sostituire le tradizionali strutture rigide impiegate nella movimentazione di carichi con un sistema robotico azionato da cavi che fosse in grado di garantire caratteristiche quali modularità e una più facile riconfigurabilità. Sono state prese in considerazione diverse architetture di robot a cavi. Innanzitutto, si è verificato per ognuna il rispetto delle specifiche di progetto assegnate dall’azienda. Si è quindi condotta un’analisi cineto-statica sulle architetture potenzialmente idonee in modo tale da determinare quale fosse quella più prestazionale. Definita la migliore configurazione, se ne è sviluppato un primo concept preliminare.