1000 resultados para Robòtica -- Algorismes


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper focuses on the general problem of coordinating multiple robots. More specifically, it addresses the self-selection of heterogeneous specialized tasks by autonomous robots. In this paper we focus on a specifically distributed or decentralized approach as we are particularly interested in a decentralized solution where the robots themselves autonomously and in an individual manner, are responsible for selecting a particular task so that all the existing tasks are optimally distributed and executed. In this regard, we have established an experimental scenario to solve the corresponding multi-task distribution problem and we propose a solution using two different approaches by applying Response Threshold Models as well as Learning Automata-based probabilistic algorithms. We have evaluated the robustness of the algorithms, perturbing the number of pending loads to simulate the robot’s error in estimating the real number of pending tasks and also the dynamic generation of loads through time. The paper ends with a critical discussion of experimental results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is now an emerging need for an efficient modeling strategy to develop a new generation of monitoring systems. One method of approaching the modeling of complex processes is to obtain a global model. It should be able to capture the basic or general behavior of the system, by means of a linear or quadratic regression, and then superimpose a local model on it that can capture the localized nonlinearities of the system. In this paper, a novel method based on a hybrid incremental modeling approach is designed and applied for tool wear detection in turning processes. It involves a two-step iterative process that combines a global model with a local model to take advantage of their underlying, complementary capacities. Thus, the first step constructs a global model using a least squares regression. A local model using the fuzzy k-nearest-neighbors smoothing algorithm is obtained in the second step. A comparative study then demonstrates that the hybrid incremental model provides better error-based performance indices for detecting tool wear than a transductive neurofuzzy model and an inductive neurofuzzy model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tool wear detection is a key issue for tool condition monitoring. The maximization of useful tool life is frequently related with the optimization of machining processes. This paper presents two model-based approaches for tool wear monitoring on the basis of neuro-fuzzy techniques. The use of a neuro-fuzzy hybridization to design a tool wear monitoring system is aiming at exploiting the synergy of neural networks and fuzzy logic, by combining human reasoning with learning and connectionist structure. The turning process that is a well-known machining process is selected for this case study. A four-input (i.e., time, cutting forces, vibrations and acoustic emissions signals) single-output (tool wear rate) model is designed and implemented on the basis of three neuro-fuzzy approaches (inductive, transductive and evolving neuro-fuzzy systems). The tool wear model is then used for monitoring the turning process. The comparative study demonstrates that the transductive neuro-fuzzy model provides better error-based performance indices for detecting tool wear than the inductive neuro-fuzzy model and than the evolving neuro-fuzzy model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the design and implementation of an intelligent control system based on local neurofuzzy models of the milling process relayed through an Ehternet-based application. Its purpose is to control the spindle torque of a milling process by using an internal model control paradigm to modify the feed rate in real time. The stabilization of cutting cutting torque is especially necessary in milling processes such as high-spedd roughing of steel moulds and dies tha present minor geometric uncertainties. Thus, maintenance of the curring torque increaes the material removal rate and reduces the risk of damage due to excessive spindle vibration, a very sensitive and expensive component in all high-speed milling machines. Torque control is therefore an interesting challenge from an industrial point of view.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work was twofold: on the one hand, to describe a comparative study of two intelligent control techniques-fuzzy and intelligent proportional-integral (PI) control, and on the other, to try to provide an answer to an as yet unsolved topic in the automotive sector-stop-and-go control in urban environments at very low speeds. Commercial vehicles exhibit nonlinear behavior and therefore constitute an excellent platform on which to check the controllers. This paper describes the design, tuning, and evaluation of the controllers performing actions on the longitudinal control of a car-the throttle and brake pedals-to accomplish stop-and-go manoeuvres. They are tested in two steps. First, a simulation model is used to design and tune the controllers, and second, these controllers are implemented in the commercial vehicle-which has automatic driving capabilities-to check their behavior. A stop-and-go manoeuvre is implemented with the two control techniques using two cooperating vehicles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intelligent Transportation Systems (ITS) cover a broad range of methods and technologies that provide answers to many problems of transportation. Unmanned control of the steering wheel is one of the most important challenges facing researchers in this area. This paper presents a method to adjust automatically a fuzzy controller to manage the steering wheel of a mass-produced vehicle to reproduce the steering of a human driver. To this end, information is recorded about the car's state while being driven by human drivers and used to obtain, via genetic algorithms, appropriate fuzzy controllers that can drive the car in the way that humans do. These controllers have satisfy two main objectives: to reproduce the human behavior, and to provide smooth actions to ensure comfortable driving. Finally, the results of automated driving on a test circuit are presented, showing both good route tracking (similar to the performance obtained by persons in the same task) and smooth driving.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is clear evidence that investment in intelligent transportation system technologies brings major social and economic benefits. Technological advances in the area of automatic systems in particular are becoming vital for the reduction of road deaths. We here describe our approach to automation of one the riskiest autonomous manœuvres involving vehicles – overtaking. The approach is based on a stereo vision system responsible for detecting any preceding vehicle and triggering the autonomous overtaking manœuvre. To this end, a fuzzy-logic based controller was developed to emulate how humans overtake. Its input is information from the vision system and from a positioning-based system consisting of a differential global positioning system (DGPS) and an inertial measurement unit (IMU). Its output is the generation of action on the vehicle’s actuators, i.e., the steering wheel and throttle and brake pedals. The system has been incorporated into a commercial Citroën car and tested on the private driving circuit at the facilities of our research center, CAR, with different preceding vehicles – a motorbike, car, and truck – with encouraging results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four longitudinal control techniques are compared: a classical Proportional-Integral (PI) control; an advanced technique-called the i-PI-that adds an intelligent component to the PI; a fuzzy controller based on human experience; and an adaptive-network-based fuzzy inference system. The controllers were designed to tackle one of the challenging topics as yet unsolved by the automotive sector: managing autonomously a gasoline-propelled vehicle at very low speeds. The dynamics involved are highly nonlinear and constitute an excellent test-bed for newly designed controllers. A Citroën C3 Pluriel car was modified to permit autonomous action on the accelerator and the brake pedals-i.e., longitudinal control. The controllers were tested in two stages. First, the vehicle was modeled to check the controllers' feasibility. Second, the controllers were then implemented in the Citroën, and their behavior under the same conditions on an identical real circuit was compared.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ntelligent systems designed to reduce highway fatalities have been widely applied in the automotive sector in the last decade. Of all users of transport systems, pedestrians are the most vulnerable in crashes as they are unprotected. This paper deals with an autonomous intelligent emergency system designed to avoid collisions with pedestrians. The system consists of a fuzzy controller based on the time-to-collision estimate – obtained via a vision-based system – and the wheel-locking probability – obtained via the vehicle’s CAN bus – that generates a safe braking action. The system has been tested in a real car – a convertible Citroën C3 Pluriel – equipped with an automated electro-hydraulic braking system capable of working in parallel with the vehicle’s original braking circuit. The system is used as a last resort in the case that an unexpected pedestrian is in the lane and all the warnings have failed to produce a response from the driver.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este artículo se presenta una metodología de análisis e interpretación de la información recogida en los Partes de Incendios de la Dirección General del Medio Natural y Política Forestal (DGMNPF), antes Dirección General de la Biodiversidad (DGB). Se aborda el problema de los incendios forestales en España centrándose en la obtención de la información distribuida espacialmente y que puede ser de utilidad en la posterior toma de decisiones en materia de prevención.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes a new method, oriented to crop row detection in images from maize fields with high weed pressure. The vision system is designed to be installed onboard a mobile agricultural vehicle, i.e. submitted to gyros, vibrations and undesired movements. The images are captured under image perspective, being affected by the above undesired effects. The image processing consists of three main processes: image segmentation, double thresholding, based on the Otsu’s method, and crop row detection. Image segmentation is based on the application of a vegetation index, the double thresholding achieves the separation between weeds and crops and the crop row detection applies least squares linear regression for line adjustment. Crop and weed separation becomes effective and the crop row detection can be favorably compared against the classical approach based on the Hough transform. Both gain effectiveness and accuracy thanks to the double thresholding that makes the main finding of the paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to the sensitive international situation caused by still-recent terrorist attacks, there is a common need to protect the safety of large spaces such as government buildings, airports and power stations. To address this problem, developments in several research fields, such as video and cognitive audio, decision support systems, human interface, computer architecture, communications networks and communications security, should be integrated with the goal of achieving advanced security systems capable of checking all of the specified requirements and spanning the gap that presently exists in the current market. This paper describes the implementation of a decision system for crisis management in infrastructural building security. Specifically, it describes the implementation of a decision system in the management of building intrusions. The positions of the unidentified persons are reported with the help of a Wireless Sensor Network (WSN). The goal is to achieve an intelligent system capable of making the best decision in real time in order to quickly neutralise one or more intruders who threaten strategic installations. It is assumed that the intruders’ behaviour is inferred through sequences of sensors’ activations and their fusion. This article presents a general approach to selecting the optimum operation from the available neutralisation strategies based on a Minimax algorithm. The distances among different scenario elements will be used to measure the risk of the scene, so a path planning technique will be integrated in order to attain a good performance. Different actions to be executed over the elements of the scene such as moving a guard, blocking a door or turning on an alarm will be used to neutralise the crisis. This set of actions executed to stop the crisis is known as the neutralisation strategy. Finally, the system has been tested in simulations of real situations, and the results have been evaluated according to the final state of the intruders. In 86.5% of the cases, the system achieved the capture of the intruders, and in 59.25% of the cases, they were intercepted before they reached their objective.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes a new method, oriented to image real-time processing, for identifying crop rows in maize fields in the images. The vision system is designed to be installed onboard a mobile agricultural vehicle, that is, submitted to gyros, vibrations, and undesired movements. The images are captured under image perspective, being affected by the above undesired effects. The image processing consists of two main processes: image segmentation and crop row detection. The first one applies a threshold to separate green plants or pixels (crops and weeds) from the rest (soil, stones, and others). It is based on a fuzzy clustering process, which allows obtaining the threshold to be applied during the normal operation process. The crop row detection applies a method based on image perspective projection that searches for maximum accumulation of segmented green pixels along straight alignments. They determine the expected crop lines in the images. The method is robust enough to work under the above-mentioned undesired effects. It is favorably compared against the well-tested Hough transformation for line detection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper studies the problem of determining the position of beacon nodes in Local Positioning Systems (LPSs), for which there are no inter-beacon distance measurements available and neither the mobile node nor any of the stationary nodes have positioning or odometry information. The common solution is implemented using a mobile node capable of measuring its distance to the stationary beacon nodes within a sensing radius. Many authors have implemented heuristic methods based on optimization algorithms to solve the problem. However, such methods require a good initial estimation of the node positions in order to find the correct solution. In this paper we present a new method to calculate the inter-beacon distances, and hence the beacons positions, based in the linearization of the trilateration equations into a closed-form solution which does not require any approximate initial estimation. The simulations and field evaluations show a good estimation of the beacon node positions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Linearized Auto-Localization (LAL) algorithm estimates the position of beacon nodes in Local Positioning Systems (LPSs), using only the distance measurements to a mobile node whose position is also unknown. The LAL algorithm calculates the inter-beacon distances, used for the estimation of the beacons’ positions, from the linearized trilateration equations. In this paper we propose a method to estimate the propagation of the errors of the inter-beacon distances obtained with the LAL algorithm, based on a first order Taylor approximation of the equations. Since the method depends on such approximation, a confidence parameter τ is defined to measure the reliability of the estimated error. Field evaluations showed that by applying this information to an improved weighted-based auto-localization algorithm (WLAL), the standard deviation of the inter-beacon distances can be improved by more than 30% on average with respect to the original LAL method.