1000 resultados para Reimbursement Mechanisms


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, we describe a motion stimulus in which the quality of rotation is fractal. This makes its motion unavailable to the translationbased motion analysis known to underlie much of our motion perception. In contrast, normal rotation can be extracted through the aggregation of the outputs of translational mechanisms. Neural adaptation of these translation-based motion mechanisms is thought to drive the motion after-effect, a phenomenon in which prolonged viewing of motion in one direction leads to a percept of motion in the opposite direction. We measured the motion after-effects induced in static and moving stimuli by fractal rotation. The after-effects found were an order of magnitude smaller than those elicited by normal rotation. Our findings suggest that the analysis of fractal rotation involves different neural processes than those for standard translational motion. Given that the percept of motion elicited by fractal rotation is a clear example of motion derived from form analysis, we propose that the extraction of fractal rotation may reflect the operation of a general mechanism for inferring motion from changes in form.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The BRCA1 gene was cloned in 1994 as one of the genes that conferred genetic predisposition to early-onset breast and ovarian cancer. Since then, a genetic test for identification of high-risk individuals has been developed. Despite being implicated in many important cellular pathways, including DNA repair and regulation of transcription, the exact mechanism by which inactivation of BRCA1 might lead to malignant transformation of cells remains unknown. We examine the mechanisms that underlie inactivation of BRCA1 and assess how they affect management of patients, in terms of both primary and secondary cancer prevention strategies. Furthermore, we look at the potential usefulness of BRCA1 as a prognostic tool and as a predictive marker of response to different classes of drugs. Finally, throughout this review, we draw links between the functional consequences of BRCA1 inactivation, in terms of key cellular signalling pathways, and how they might explain specific clinical observations in individuals who carry mutations in the gene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work investigates the reactivity of the surface species observable by in situ DRIFTS formed over a Pt/ZrO2 during the water-gas shift (WGS) reaction. A DRIFTS cell/mass spectrometer system was operated at the chemical steady state during isotopic transients to yield information about the true nature (i.e., main reaction intermediate or spectators) of adsorbates. Only carbonyl and formate species were observed by DRIFTS under reaction conditions; the surface coverage of carbonate species was negligible. Isotopic transient kinetic analyses revealed that formates exchanged uniformly according to a first-order law, suggesting that most formates observed by DRIFTS were of the same reactivity. In addition, the time scale of the exchange of the reaction product CO2 was significantly shorter than that of the surface formates. Therefore, a formate route based on the formates as detected by DRIFTS can be ruled out as the main reaction pathway in the present case. The number of precursors of the reaction product CO2 was smaller than the number of surface Pt atoms, suggesting that carbonyl species or some \

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work emphasizes the importance of including a full quantitative analysis when in situ operando methods are used to investigate reaction mechanisms and reaction intermediates. The fact that some surface species exchange at a similar rate to the reaction product during isotopic transients is a necessary but not sufficient criterion for participation as a key reaction intermediate. This is exemplified here in the case of highly active low-temperature water-gas shift (WGS) catalysts based on gold and platinum. Operando DRIFTS data, isotopic exchanges, and DRIFTS calibration curves relating the concentration of formate species to the corresponding DRIFTS band intensity were combined to obtain a quantitative measure of the specific rate of formate decomposition. Despite displaying a rapid isotopic exchange rate (sometimes as fast as that of the reaction product CO2), the concentration of formates seen by DRIFTS was found to account for at most only 10% of the CO2 produced under the experimental conditions reported herein. These new results obtained on Au/CeZrO4 and Pt/CeO2 preparations (which are among the most active low-temperature WGS catalysts reported to date), led to the same conclusions regarding the minor role of IR-observable formates as those obtained in the case of less active Au/Ce(La)O-2 and Pt/ZrO2 catalysts. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We systematically investigated the mechanism of the C-1 + C-1 coupling reactions using density functional theory. The activation energies of C-1 + C-1 coupling and carbon hydrogenation reactions on both flat and stepped surfaces were calculated and analyzed. Moreover, the coverages of adsorbed C-1 species were estimated, and the reaction rates of all possible C-1 + C-1 coupling pathways were quantitatively evaluated. The results suggest that the reactions of CH2 + CH2 and CH3 + C at steps are most likely to be the key C-1 + C-1 coupling steps in FT synthesis on Co catalysts. The reactions of C-2 + C-1 and C-3 + C-1 coupling also were studied; the results demonstrate that in addition to the pathways of RCH + CH2 and RCH2 + C, the coupling of RC + C and RC + CH also may contribute to the chain growth after C-1. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is some dispute as to whether methanol decomposition occurs by O-H bond scission or C-O bond scission. By carrying out density functional theory calculations, we investigate both scenario of the reaction pathways of methanol decomposition on a Pd(111) surface. It is shown that the O-H bond scission pathway is much more energetically favorable than the C-O bond scission pathway. The high reaction barrier in the latter case is found to be due to the poor bonding abilities of CH3 and OH with the surface at the reaction sites. (C) 2001 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ruthenium is one of the poorest catalysts for CO oxidation under normal conditions (low or medium O coverage and normal temperature). However, a recent study [Science 285, 1042 (1999)] reveals that, under femtosecond laser irradiation, CO2 can be formed on the Ru surface, and the reaction follows an electron-mediated mechanism. We carried out density functional theory calculations to investigate CO oxidation via an electron-mediated mechanism on Ru(0001). By comparison to the reaction under normal conditions, following features emerge in the electron-mediated mechanism: (i) more reaction channels are open; (ii) the reaction barrier is significantly lowered. The physical origins for these novel features have been analyzed. (C) 2001 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nature of the surface species formed at the surface of 2 wt.% Pt/CeO2 catalyst during the forward water-gas-shift (WGS, CO + H2O -> CO2 + H-2) and the reverse reaction (RWGS) were essentially identical. More, the surface concentration of formate, carbonate and carbonyl species was similar in each case. The presence of well-resolved IR bands allowed an unequivocal relative quantitative analysis of each species, avoiding the use of the carboxylate stretching region (1600-1200 cm(-1)). However, the quantitative analysis in the case of an isotopic study was complicated due to the overlapping of the various isotope bands, yet this problem could be overcome by integrating the high-wavenumber part of the bands. The reactivity of the surface species formed under RWGS conditions was followed under two different gaseous streams. Firstly, the reactivity of these intermediates were followed under an inert gas (i.e., At), in which case carbonates were essentially stable and less reactive than formates. Secondly, the reactivity of the same surface species was followed when switching to the corresponding C-13-labelled feed (i.e., (CO2)-C-13 + H-2), in which case carbonates were exchanged significantly faster than formates. While carbonates species have been reported as reaction intermediate under reaction conditions, the increased stability or surface poisoning by these carbonates in the absence of reaction mixture was highlighted. Ultimately, this work re-emphasises the need to use steady-state conditions if the true operando reactivity of the adsorbates and structure of the solid are to be determined. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of nitrogen oxides (NOx) during a combustion process is difficult to avoid because of the large exotherm and the consequent problem of avoiding local high-temperature spikes. Consequently, for many applications, such as for automotive power generation, there will be a continuing need to use catalytic after-treatment to reduce harmful emissions. The investigation of the mechanisms of the key catalytic reactions in environmental catalysis can provide an insight into the action of the catalyst, and time-resolved methods offer a powerful means to study these processes under realistic conditions. The use of Temporal Analysis of Products (TAP) and Steady State Isotopic Transient Kinetic Analysis (SSITKA) methods to investigate the reduction of NOx under various experimental conditions is described. From a detailed analysis of the SSITKA profiles, it is shown that at low temperatures the mechanism for the formation of N-2 and N2O from NO may differ from the conventional high-temperature mechanism. This is supported by density functional theory calculations, which show that the barrier to the formation of N2O from the reaction of N(ads) and NO(ads) may be too high to allow this process to occur at low temperatures. The alternative reaction of NO(ads) + NO(ads) = N2O(g) + O(ads) is shown to be much more favorable and is consistent with the SSITKA analysis. The remarkable effect of hydrogen as a reductant at low temperatures is described, and alternative interpretations of the role of hydrogen are discussed.