911 resultados para Regression (PCR)
Resumo:
(ABR) is of fundamental importance to the investiga- tion of the auditory system behavior, though its in- terpretation has a subjective nature because of the manual process employed in its study and the clinical experience required for its analysis. When analyzing the ABR, clinicians are often interested in the identi- fication of ABR signal components referred to as Jewett waves. In particular, the detection and study of the time when these waves occur (i.e., the wave la- tency) is a practical tool for the diagnosis of disorders affecting the auditory system. In this context, the aim of this research is to compare ABR manual/visual analysis provided by different examiners. Methods: The ABR data were collected from 10 normal-hearing subjects (5 men and 5 women, from 20 to 52 years). A total of 160 data samples were analyzed and a pair- wise comparison between four distinct examiners was executed. We carried out a statistical study aiming to identify significant differences between assessments provided by the examiners. For this, we used Linear Regression in conjunction with Bootstrap, as a me- thod for evaluating the relation between the responses given by the examiners. Results: The analysis sug- gests agreement among examiners however reveals differences between assessments of the variability of the waves. We quantified the magnitude of the ob- tained wave latency differences and 18% of the inves- tigated waves presented substantial differences (large and moderate) and of these 3.79% were considered not acceptable for the clinical practice. Conclusions: Our results characterize the variability of the manual analysis of ABR data and the necessity of establishing unified standards and protocols for the analysis of these data. These results may also contribute to the validation and development of automatic systems that are employed in the early diagnosis of hearing loss.
Resumo:
BACKGROUND: The aim of this study was to evaluate the association of polymorphisms of the peroxisome proliferator-activated receptor gamma (PPARG) gene and peroxisome proliferators-activated receptor gamma co-activator 1 alpha (PPARGC1A) gene with diabetic nephropathy (DN) in Asian Indians. METHODS: Six common polymorphisms, 3 of the PPARG gene [-1279G/A, Pro12Ala, and His478His (C/T)] and 3 of the PPARGC1A gene (Thr394Thr, Gly482Ser, and +A2962G) were studied in 571 normal glucose-tolerant (NGT) subjects, 255 type 2 diabetic (T2D) subjects without nephropathy, and 141 DN subjects. Genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and direct sequencing. Logistic regression analysis was performed to assess the covariables associated with DN. RESULTS: Among the 6 polymorphisms examined, only the Gly482Ser of the PPARGC1A gene was significantly associated with DN. The genotype frequency of Ser/Ser genotype of the PPARGC1A gene was 8.8% (50/571) in NGT subjects, 7.8% (20/255) in T2D subjects, and 29.8% (42/141) in DN subjects. The odds ratios (ORs) for DN for the susceptible Gly/Ser and Ser/Ser genotype after adjusting for age, sex, body mass index, and duration of diabetes were 2.14 [95% confidence interval (CI), 1.23-3.72; P = 0.007] and 8.01 (95% CI, 3.89-16.47; P < 0.001), respectively. The unadjusted OR for DN for the XA genotype of the Thr394Thr polymorphism was 1.87 (95% CI, 1.20-2.92; P = 0.006) compared to T2D subjects. However, the significance was lost (P = 0.061) when adjusted for age, sex, BMI, and duration of diabetes. The +A2962G of PPARGC1A and the 3 polymorphisms of PPARG were not associated with DN. CONCLUSION: The Gly482Ser polymorphism of the PPARGC1A gene is associated with DN in Asian Indians.
Resumo:
Adiponectin is an adipose tissue specific protein that is decreased in subjects with obesity and type 2 diabetes. The objective of the present study was to examine whether variants in the regulatory regions of the adiponectin gene contribute to type 2 diabetes in Asian Indians. The study comprised of 2,000 normal glucose tolerant (NGT) and 2,000 type 2 diabetic, unrelated subjects randomly selected from the Chennai Urban Rural Epidemiology Study (CURES), in southern India. Fasting serum adiponectin levels were measured by radioimmunoassay. We identified two proximal promoter SNPs (-11377C-->G and -11282T-->C), one intronic SNP (+10211T-->G) and one exonic SNP (+45T-->G) by SSCP and direct sequencing in a pilot study (n = 500). The +10211T-->G SNP alone was genotyped using PCR-RFLP in 4,000 study subjects. Logistic regression analysis revealed that subjects with TG genotype of +10211T-->G had significantly higher risk for diabetes compared to TT genotype [Odds ratio 1.28; 95% Confidence Interval (CI) 1.07-1.54; P = 0.008]. However, no association with diabetes was observed with GG genotype (P = 0.22). Stratification of the study subjects based on BMI showed that the odds ratio for obesity for the TG genotype was 1.53 (95%CI 1.3-1.8; P < 10(-7)) and that for GG genotype, 2.10 (95% CI 1.3-3.3; P = 0.002). Among NGT subjects, the mean serum adiponectin levels were significantly lower among the GG (P = 0.007) and TG (P = 0.001) genotypes compared to TT genotype. Among Asian Indians there is an association of +10211T-->G polymorphism in the first intron of the adiponectin gene with type 2 diabetes, obesity and hypoadiponectinemia.
Resumo:
AIMS: The objective of the present investigation was to examine the relationship of three polymorphisms, Thr394Thr, Gly482Ser and +A2962G, of the peroxisome proliferator activated receptor-gamma co-activator-1 alpha (PGC-1alpha) gene with Type 2 diabetes in Asian Indians. METHODS: The study group comprised 515 Type 2 diabetic and 882 normal glucose tolerant subjects chosen from the Chennai Urban Rural Epidemiology Study, an ongoing population-based study in southern India. The three polymorphisms were genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Haplotype frequencies were estimated using an expectation-maximization (EM) algorithm. Linkage disequilibrium was estimated from the estimates of haplotypic frequencies. RESULTS: The three polymorphisms studied were not in linkage disequilibrium. With respect to the Thr394Thr polymorphism, 20% of the Type 2 diabetic patients (103/515) had the GA genotype compared with 12% of the normal glucose tolerance (NGT) subjects (108/882) (P = 0.0004). The frequency of the A allele was also higher in Type 2 diabetic subjects (0.11) compared with NGT subjects (0.07) (P = 0.002). Regression analysis revealed the odds ratio for Type 2 diabetes for the susceptible genotype (XA) to be 1.683 (95% confidence intervals: 1.264-2.241, P = 0.0004). Age adjusted glycated haemoglobin (P = 0.003), serum cholesterol (P = 0.001) and low-density lipoprotein (LDL) cholesterol (P = 0.001) levels and systolic blood pressure (P = 0.001) were higher in the NGT subjects with the XA genotype compared with GG genotype. There were no differences in genotype or allelic distribution between the Type 2 diabetic and NGT subjects with respect to the Gly482Ser and +A2962G polymorphisms. CONCLUSIONS: The A allele of Thr394Thr (G --> A) polymorphism of the PGC-1 gene is associated with Type 2 diabetes in Asian Indian subjects and the XA genotype confers 1.6 times higher risk for Type 2 diabetes compared with the GG genotype in this population.
Resumo:
In this article, we illustrate experimentally an important consequence of the stochastic component in choice behaviour which has not been acknowledged so far. Namely, its potential to produce ‘regression to the mean’ (RTM) effects. We employ a novel approach to individual choice under risk, based on repeated multiple-lottery choices (i.e. choices among many lotteries), to show how the high degree of stochastic variability present in individual decisions can distort crucially certain results through RTM effects. We demonstrate the point in the context of a social comparison experiment.
Resumo:
An efficient two-level model identification method aiming at maximising a model׳s generalisation capability is proposed for a large class of linear-in-the-parameters models from the observational data. A new elastic net orthogonal forward regression (ENOFR) algorithm is employed at the lower level to carry out simultaneous model selection and elastic net parameter estimation. The two regularisation parameters in the elastic net are optimised using a particle swarm optimisation (PSO) algorithm at the upper level by minimising the leave one out (LOO) mean square error (LOOMSE). There are two elements of original contributions. Firstly an elastic net cost function is defined and applied based on orthogonal decomposition, which facilitates the automatic model structure selection process with no need of using a predetermined error tolerance to terminate the forward selection process. Secondly it is shown that the LOOMSE based on the resultant ENOFR models can be analytically computed without actually splitting the data set, and the associate computation cost is small due to the ENOFR procedure. Consequently a fully automated procedure is achieved without resort to any other validation data set for iterative model evaluation. Illustrative examples are included to demonstrate the effectiveness of the new approaches.
Resumo:
An efficient data based-modeling algorithm for nonlinear system identification is introduced for radial basis function (RBF) neural networks with the aim of maximizing generalization capability based on the concept of leave-one-out (LOO) cross validation. Each of the RBF kernels has its own kernel width parameter and the basic idea is to optimize the multiple pairs of regularization parameters and kernel widths, each of which is associated with a kernel, one at a time within the orthogonal forward regression (OFR) procedure. Thus, each OFR step consists of one model term selection based on the LOO mean square error (LOOMSE), followed by the optimization of the associated kernel width and regularization parameter, also based on the LOOMSE. Since like our previous state-of-the-art local regularization assisted orthogonal least squares (LROLS) algorithm, the same LOOMSE is adopted for model selection, our proposed new OFR algorithm is also capable of producing a very sparse RBF model with excellent generalization performance. Unlike our previous LROLS algorithm which requires an additional iterative loop to optimize the regularization parameters as well as an additional procedure to optimize the kernel width, the proposed new OFR algorithm optimizes both the kernel widths and regularization parameters within the single OFR procedure, and consequently the required computational complexity is dramatically reduced. Nonlinear system identification examples are included to demonstrate the effectiveness of this new approach in comparison to the well-known approaches of support vector machine and least absolute shrinkage and selection operator as well as the LROLS algorithm.
Resumo:
A new class of parameter estimation algorithms is introduced for Gaussian process regression (GPR) models. It is shown that the integration of the GPR model with probability distance measures of (i) the integrated square error and (ii) Kullback–Leibler (K–L) divergence are analytically tractable. An efficient coordinate descent algorithm is proposed to iteratively estimate the kernel width using golden section search which includes a fast gradient descent algorithm as an inner loop to estimate the noise variance. Numerical examples are included to demonstrate the effectiveness of the new identification approaches.
Resumo:
Classical regression methods take vectors as covariates and estimate the corresponding vectors of regression parameters. When addressing regression problems on covariates of more complex form such as multi-dimensional arrays (i.e. tensors), traditional computational models can be severely compromised by ultrahigh dimensionality as well as complex structure. By exploiting the special structure of tensor covariates, the tensor regression model provides a promising solution to reduce the model’s dimensionality to a manageable level, thus leading to efficient estimation. Most of the existing tensor-based methods independently estimate each individual regression problem based on tensor decomposition which allows the simultaneous projections of an input tensor to more than one direction along each mode. As a matter of fact, multi-dimensional data are collected under the same or very similar conditions, so that data share some common latent components but can also have their own independent parameters for each regression task. Therefore, it is beneficial to analyse regression parameters among all the regressions in a linked way. In this paper, we propose a tensor regression model based on Tucker Decomposition, which identifies not only the common components of parameters across all the regression tasks, but also independent factors contributing to each particular regression task simultaneously. Under this paradigm, the number of independent parameters along each mode is constrained by a sparsity-preserving regulariser. Linked multiway parameter analysis and sparsity modeling further reduce the total number of parameters, with lower memory cost than their tensor-based counterparts. The effectiveness of the new method is demonstrated on real data sets.
Resumo:
Forecasting wind power is an important part of a successful integration of wind power into the power grid. Forecasts with lead times longer than 6 h are generally made by using statistical methods to post-process forecasts from numerical weather prediction systems. Two major problems that complicate this approach are the non-linear relationship between wind speed and power production and the limited range of power production between zero and nominal power of the turbine. In practice, these problems are often tackled by using non-linear non-parametric regression models. However, such an approach ignores valuable and readily available information: the power curve of the turbine's manufacturer. Much of the non-linearity can be directly accounted for by transforming the observed power production into wind speed via the inverse power curve so that simpler linear regression models can be used. Furthermore, the fact that the transformed power production has a limited range can be taken care of by employing censored regression models. In this study, we evaluate quantile forecasts from a range of methods: (i) using parametric and non-parametric models, (ii) with and without the proposed inverse power curve transformation and (iii) with and without censoring. The results show that with our inverse (power-to-wind) transformation, simpler linear regression models with censoring perform equally or better than non-linear models with or without the frequently used wind-to-power transformation.
Resumo:
We use sunspot group observations from the Royal Greenwich Observatory (RGO) to investigate the effects of intercalibrating data from observers with different visual acuities. The tests are made by counting the number of groups RB above a variable cut-off threshold of observed total whole-spot area (uncorrected for foreshortening) to simulate what a lower acuity observer would have seen. The synthesised annual means of RB are then re-scaled to the full observed RGO group number RA using a variety of regression techniques. It is found that a very high correlation between RA and RB (rAB > 0.98) does not prevent large errors in the intercalibration (for example sunspot maximum values can be over 30 % too large even for such levels of rAB). In generating the backbone sunspot number (RBB), Svalgaard and Schatten (2015, this issue) force regression fits to pass through the scatter plot origin which generates unreliable fits (the residuals do not form a normal distribution) and causes sunspot cycle amplitudes to be exaggerated in the intercalibrated data. It is demonstrated that the use of Quantile-Quantile (“Q Q”) plots to test for a normal distribution is a useful indicator of erroneous and misleading regression fits. Ordinary least squares linear fits, not forced to pass through the origin, are sometimes reliable (although the optimum method used is shown to be different when matching peak and average sunspot group numbers). However, other fits are only reliable if non-linear regression is used. From these results it is entirely possible that the inflation of solar cycle amplitudes in the backbone group sunspot number as one goes back in time, relative to related solar-terrestrial parameters, is entirely caused by the use of inappropriate and non-robust regression techniques to calibrate the sunspot data.
Resumo:
TMV was tried to recover from a variety of branded cigarettes and cigars. Tobacco from six different brands of cigarettes and cigar were processed and reverse transcriptase polymerase chain reaction was employed for the detection of TMV. RTPCR confirmed the presence of TMV in tobacco from one brand of cigarette and one brand of cigar. Bean plants (Phaseolus vulgaris) were inoculated manually with tobacco sap of cigarettes resulting in the production of localized disease lesions. Together, these results showed that tobacco used to make cigarettes and cigars can function as an effective disease vector, potentially aiding the movement of infectious TMV between countries. This is an important finding prompting a need to test smoking tobacco for other virus particles that infect tobacco plants and survive processing as well as considering biosecurity measures to limit virus transmission
Resumo:
The performance of the rapid slide agglutination test, with and without 2-mercaptoethanol (RSAT and 2ME-RSAT) and agar gel immunodiffusion test (AGID) was evaluated for the diagnosis of brucellosis in naturally infected dogs. The microbiological culture, PCR and clinical parameters were used as reference. A total of 167 dogs were clinically examined and tested by blood culture, culture of semen/vaginal swab and PCR in blood and semen/vaginal swab. According to the results observed the 167 dogs were divided into three groups: Brucella canis infected dogs (Group 1). B. canis non-infected dogs (Group 2) and dogs with suspected brucellosis (Group 3). The dogs were then tested by RSAT, 2ME-RSAT and AGID. Groups 1 and 2 were used to calculate the diagnostic sensitivity and specificity of the serological tests and the results observed in Group 3 were also discussed. The diagnostic sensitivity of RSAT, 2ME-RSAT and AGID was respectively 70.58%, 31.76%, and 52.94%. The diagnostic specificity of RSAT, 2ME-RSAT and AGID was respectively 83.34%, 100%, and 100%. In dogs with suspected brucellosis 15% were RSAT positive, none was 2ME-RSAT positive and 5% were AGID positive. Although the serological tests are the most commonly used methods for brucellosis diagnosis, a significant proportion of false-negative results were observed highlighting the importance of the direct methods of diagnosis, like blood culture and PCR to improve the diagnosis of canine brucellosis. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Toxoplasma gondii, Hammondia hammondi, Neospora caninum, Neospora hughesi and Hammondia heydorni are members of the Toxoplasmatinae sub-family. They are closely related coccidians with similarly sized oocysts. Molecular diagnostic techniques, especially those based on polymerase chain reaction (PCR), can be successfully applied for the differentiation of Hammondia-like oocysts. In this paper, we describe a rapid and simple method for the identification of H. heydorni oocysts among other members of the Toxoplasmatinae sub-family, using a heminested-PCR (hnPCR-AP10) based on a H. heydorni RAPD fragment available in molecular database. DNA of oocysts of H. heydorni yielded a specific fragment of 289-290 bp in the heminested-PCR assay. No product was yielded when the primers were used for the amplification of DNA extracted from T. gondii, N. caninum, N. hughesi and H. hammondi, thus allowing the differentiation of H. heydorni among other members of the Toxoplasmatinae sub-family. The hnPCR-AP10 was capable of detecting H. heydorni genetic sequences from suspensions with at least 10 oocysts. In conclusion, the hnPCR-AP10 proved to be a reliable method to be used in the identification of H. heydorni oocysts from feces of dogs. (C) 2010 Elsevier B.V. All rights reserved.