911 resultados para Redox titration
Resumo:
Zinc chelates have been widely used to correct deficiencies in this micronutrient in different soil types and under different moisture conditions. The aging of the metal in soil could cause a change in its availability. Over time the most labile forms of Zn could decrease in activity and extractability and change to more stable forms. Various soil parameters, such as redox conditions, time, soil type and moisture conditions, affect the aging process and modify the solubility of the metal. In general, redox conditions influence pH and also the chemical forms dissolved in the soil solution. Soil pH also affects Zn solubility; at high pH values, most of the Zn is present in forms that are not bioavailable to plants. The objective of this study was to determine the changes in Zn over time in a soil solution in a waterlogged acidic soil to which synthetic and natural chelates were applied
Resumo:
Palm juice (Borassus flabellifer) is one of the most common and cheap natural juices. Fermented palm juice contains various phytochemical compounds that exhibit antioxidant activity. In the present study, we examined the effects of pH on the production of phytochemicals and their antioxidant activity during the fermentation process. The concentration of total phenolics and flavonoid compounds of fermented palm juice and their antioxidant activity were investigated at various pH. The results showed that total phenolics concentration and antioxidant activity of palm wine and palm vinegar increase as pH increases: 3.54.55.5. Maximum flavonoid concentration was obtained at pH 6.5. Measurements of antioxidant activity by conventional DPPH method and Photochem antioxidant analyzer technique were highly correlated, with a corresponding R2 value of 0.94.
Resumo:
SoxR is a transcription activator governing a cellular response to superoxide and nitric oxide in Escherichia coli. SoxR protein is a homodimer, and each monomer has a redox-active [2Fe–2S] cluster. Oxidation and reduction of the [2Fe–2S] clusters can reversibly activate and inactivate SoxR transcriptional activity. Here, we use electron paramagnetic resonance spectroscopy to follow the redox-switching process of SoxR protein in vivo. SoxR [2Fe–2S] clusters were in the fully reduced state during normal aerobic growth, but were completely oxidized after only 2-min aerobic exposure of the cells to superoxide-generating agents such as paraquat. The oxidized SoxR [2Fe–2S] clusters were rapidly re-reduced in vivo once the oxidative stress was removed. The in vivo kinetics of SoxR [2Fe–2S] cluster oxidation and reduction exactly paralleled the increase and decrease of transcription of soxS, the target gene for SoxR. The kinetic analysis also revealed that an oxidative stress-linked decrease in soxS mRNA stability contributes to the rapid attainment of a new steady state after SoxR activation. Such a redox stress-related change in soxS mRNA stability may represent a new level of biological control.
Resumo:
Damage from free radicals has been demonstrated in susceptible neuronal populations in cases of Alzheimer disease. In this study, we investigated whether iron, a potent source of the highly reactive hydroxyl radical that is generated by the Fenton reaction with H2O2, might contribute to the source of radicals in Alzheimer disease. We found, using a modified histochemical technique that relies on the formation of mixed valence iron complexes, that redox-active iron is associated with the senile plaques and neurofibrillary tangles—the pathological hallmark lesions of this disease. This lesion-associated iron is able to participate in in situ oxidation and readily catalyzes an H2O2-dependent oxidation. Furthermore, removal of iron was completely effected using deferoxamine, after which iron could be rebound to the lesions. Characterization of the iron-binding site suggests that binding is dependent on available histidine residues and on protein conformation. Taken together, these findings indicate that iron accumulation could be an important contributor toward the oxidative damage of Alzheimer disease.
Resumo:
We identified a protein, Aer, as a signal transducer that senses intracellular energy levels rather than the external environment and that transduces signals for aerotaxis (taxis to oxygen) and other energy-dependent behavioral responses in Escherichia coli. Domains in Aer are similar to the signaling domain in chemotaxis receptors and the putative oxygen-sensing domain of some transcriptional activators. A putative FAD-binding site in the N-terminal domain of Aer shares a consensus sequence with the NifL, Bat, and Wc-1 signal-transducing proteins that regulate gene expression in response to redox changes, oxygen, and blue light, respectively. A double mutant deficient in aer and tsr, which codes for the serine chemoreceptor, was negative for aerotaxis, redox taxis, and glycerol taxis, each of which requires the proton motive force and/or electron transport system for signaling. We propose that Aer and Tsr sense the proton motive force or cellular redox state and thereby integrate diverse signals that guide E. coli to environments where maximal energy is available for growth.
Resumo:
Through the use of site-directed mutagenesis and chemical rescue, we have identified the proton acceptor for redox-active tyrosine D in photosystem II (PSII). Effects of chemical rescue on the tyrosyl radical were monitored by EPR spectroscopy. We also have acquired the Fourier–transform infrared (FT-IR) spectrum associated with the oxidation of tyrosine D and concomitant protonation of the acceptor. Mutant and isotopically labeled PSII samples are used to assign vibrational lines in the 3,600–3,100 cm−1 region to N-H modes of His-189 in the D2 polypeptide. When His-189 in D2 is changed to a leucine (HL189D2) in PSII, dramatic alterations of both EPR and FT-IR spectra are observed. When imidazole is introduced into HL189D2 samples, results from both EPR and FT-IR spectroscopy argue that imidazole is functionally reconstituted into an accessible pocket and that imidazole acts as a chemical mimic for His-189. Small perturbations of EPR and FT-IR spectra are consistent with access to this pocket in wild-type PSII, as well. Structures of the analogous site in bacterial reaction centers suggest that an accessible pocket, large enough to contain imidazole, is bordered by tyrosine D and His-189 in the D2 polypeptide. These data provide evidence that His-189 in the D2 polypeptide of PSII acts as a proton acceptor for redox-active tyrosine D and that proton transfer to the imidazole ring facilitates the efficient oxidation/reduction of tyrosine D.