851 resultados para Red-blood-cell
Resumo:
Maximizing data quality may be especially difficult in trauma-related clinical research. Strategies are needed to improve data quality and assess the impact of data quality on clinical predictive models. This study had two objectives. The first was to compare missing data between two multi-center trauma transfusion studies: a retrospective study (RS) using medical chart data with minimal data quality review and the PRospective Observational Multi-center Major Trauma Transfusion (PROMMTT) study with standardized quality assurance. The second objective was to assess the impact of missing data on clinical prediction algorithms by evaluating blood transfusion prediction models using PROMMTT data. RS (2005-06) and PROMMTT (2009-10) investigated trauma patients receiving ≥ 1 unit of red blood cells (RBC) from ten Level I trauma centers. Missing data were compared for 33 variables collected in both studies using mixed effects logistic regression (including random intercepts for study site). Massive transfusion (MT) patients received ≥ 10 RBC units within 24h of admission. Correct classification percentages for three MT prediction models were evaluated using complete case analysis and multiple imputation based on the multivariate normal distribution. A sensitivity analysis for missing data was conducted to estimate the upper and lower bounds of correct classification using assumptions about missing data under best and worst case scenarios. Most variables (17/33=52%) had <1% missing data in RS and PROMMTT. Of the remaining variables, 50% demonstrated less missingness in PROMMTT, 25% had less missingness in RS, and 25% were similar between studies. Missing percentages for MT prediction variables in PROMMTT ranged from 2.2% (heart rate) to 45% (respiratory rate). For variables missing >1%, study site was associated with missingness (all p≤0.021). Survival time predicted missingness for 50% of RS and 60% of PROMMTT variables. MT models complete case proportions ranged from 41% to 88%. Complete case analysis and multiple imputation demonstrated similar correct classification results. Sensitivity analysis upper-lower bound ranges for the three MT models were 59-63%, 36-46%, and 46-58%. Prospective collection of ten-fold more variables with data quality assurance reduced overall missing data. Study site and patient survival were associated with missingness, suggesting that data were not missing completely at random, and complete case analysis may lead to biased results. Evaluating clinical prediction model accuracy may be misleading in the presence of missing data, especially with many predictor variables. The proposed sensitivity analysis estimating correct classification under upper (best case scenario)/lower (worst case scenario) bounds may be more informative than multiple imputation, which provided results similar to complete case analysis.^
Resumo:
Coronary heart disease (CHD) is the leading cause of death in women and rates markedly increase among women after 65 years of age. C-reactive protein (CRP) is a new clinical indicator of atherosclerotic-related inflammation with a direct pathogenic role. Studies show lifestyle factors can modulate CRP. Omega-3 fatty acids have anti-inflammatory properties and studies suggest that eating fish high in omega-3 fatty acids may lower CHD risk in women. This study sought to assess the possible role of omega-3 fatty acids in the reduction of CHD-related inflammation by investigating the effect of fish consumption on CRP levels. Methods. Twenty-four healthy postmenopausal women were randomly assigned to a fish group (usual diet plus two servings per week of enriched fish) or control group (usual diet with no fatty fish) for eight weeks. Omega-3 fatty acid-enriched fish developed by the West Virginia University Aquaculture Division was used. Serum CRP, serum interleukin-6 (IL-6), and the fatty acid content of red blood cells (RBC) were measured before and after the study. Women also completed food records. RESULTS: Baseline levels of CRP were low (85% of the fish group had normal levels) and few changes in CRP risk category were observed. Mean IL-6 levels were reduced by 27% and 35% in the fish and control groups, respectively (p for between-group difference = 0.60). Changes in RBC fatty acid composition were not statistically significant. Compared to control women, women in the fish group had greater reductions in mean triglycerides (p = 0.08), total cholesterol (P = 0.04), and LDL cholesterol levels (p = 0.06). Baseline dietary intake of total and monounsaturated fatty acids tended to be positively associated with baseline CRP, while vitamin E intake was inversely related. Saturated fat intake tended to have a positive association with IL-6. Conclusions. Findings regarding the effect of two servings of fish on CRP and IL-6 levels are inconclusive due to low baseline levels of CRP and IL-6. However, results indicate two servings of fatty fish have favorable effects on blood lipids. The relationship of dietary components with CRP and IL-6 is complex and further research is needed to determine the varying roles of diet on the inflammatory process. ^
Resumo:
Behavioural field observations are increasingly being used in ecotoxicological research to identify potential adverse effects of exposure to persistent organic pollutants (POPs). We investigated thermal conditions inside the nest and parental behaviour of glaucous gulls, Larus hyperboreus, breeding in the Norwegian Arctic in relation to the concentrations of major classes of POPs (organochlorines, brominated flame retardants and metabolically derived products) accumulated in their blood. Most notably, nest temperature was negatively correlated with the concentrations of the sum of DDT, sum of PCB and several quantitatively minor POP classes within the incubating parent. To investigate the relationship between incubation ability and parental POP exposure further, we experimentally increased the costs of incubation by artificially increasing the clutch size from two to four eggs. Clutch enlargement was followed by a decrease in nest temperature, but this drop in temperature was not associated with POP concentrations within the incubating parent. However, males, which had higher POP concentrations and lower white blood cell counts than females, seemed less able to maintain nest temperature. There was virtually no evidence to suggest that the sum of PCB or DDT were associated with changes in the time a bird spent incubating. However, there was some indication that nest site attendance by nonincubating males was negatively related to the sum of DDT, suggesting that nest protection may have been compromised. The results suggest that adverse effects of parental POP exposure may occur through suboptimal thermal conditions for embryo development and possibly increased egg predation risk.
Resumo:
We examined and collected biomedical samples from Weddell seals (Leptonychotes weddellii) during studies of post-breeding-season foraging behaviour of adults and movements of weaned pups as a complement to ongoing studies on the ecology and population dynamics of the McMurdo seals (Stewart et al. 2000, 2003). Here we report on Weddell seal health assessments conducted during the 1996/97, 1997/98 and 1998/99 breeding seasons at the Delbridge Islands (77.68°S, 166.50°E), McMurdo Sound, Antarctica. Our objectives were to compile baseline biomedical data for Weddell seals in McMurdo Sound, and to identify infectious and non-infectious diseases affecting the population. Development of such a database, including information on normal background morbidity and mortality, is an important first step in evaluating natural versus anthropogenic impacts on population health (Geraci et al. 1999; Reddy et al. 2001). These data will be integral to international studies of southern ocean pinnipeds that seek to evaluate the influence of biotic and abiotic factors on the ecology of these apex predators.
Resumo:
Adenoviral vectors were used to deliver genes encoding a soluble interleukin 1 (IL-1)-type I receptor-IgG fusion protein and/or a soluble type I tumor necrosis factor α (TNFα) receptor-IgG fusion protein directly to the knees of rabbits with antigen-induced arthritis. When tested individually, knees receiving the soluble IL-1 receptor had significantly reduced cartilage matrix degradation and white blood cell infiltration into the joint space. Delivery of the soluble TNFα receptor was less effective, having only a moderate effect on white blood cell infiltration and no effect on cartilage breakdown. When both soluble receptors were used together, there was a greater inhibition of white blood cell infiltration and cartilage breakdown with a considerable reduction of synovitis. Interestingly, anti-arthritic effects were also seen in contralateral control knees receiving only a marker gene, suggesting that sustained local inhibition of disease activity in one joint may confer an anti-arthritic effect on other joints. These results suggest that local intra-articular gene transfer could be used to treat systemic polyarticular arthritides.
Resumo:
Malaria during the first pregnancy causes a high rate of fetal and neonatal death. The decreasing susceptibility during subsequent pregnancies correlates with acquisition of antibodies that block binding of infected red cells to chondroitin sulfate A (CSA), a receptor for parasites in the placenta. Here we identify a domain within a particular Plasmodium falciparum erythrocyte membrane protein 1 that binds CSA. We cloned a var gene expressed in CSA-binding parasitized red blood cells (PRBCs). The gene had eight receptor-like domains, each of which was expressed on the surface of Chinese hamster ovary cells and was tested for CSA binding. CSA linked to biotin used as a probe demonstrated that two Duffy-binding-like (DBL) domains (DBL3 and DBL7) bound CSA. DBL7, but not DBL3, also bound chondroitin sulfate C (CSC) linked to biotin, a negatively charged sugar that does not support PRBC adhesion. Furthermore, CSA, but not CSC, blocked the interaction with DBL3; both CSA and CSC blocked binding to DBL7. Thus, only the DBL3 domain displays the same binding specificity as PRBCs. Because protective antibodies present after pregnancy block binding to CSA of parasites from different parts of the world, DBL-3, although variant, may induce cross-reactive immunity that will protect pregnant women and their fetuses.
Resumo:
A hierarchical order of gene expression has been proposed to control developmental events in hematopoiesis, but direct demonstration of the temporal relationships between regulatory gene expression and differentiation has been difficult to achieve. We modified a single-cell PCR method to detect 2-fold changes in mRNA copies per cell (dynamic range, 250–250,000 copies/cell) and used it to sequentially quantitate gene expression levels as single primitive (CD34+,CD38−) progenitor cells underwent differentiation to become erythrocytes, granulocytes, or monocyte/macrophages. Markers of differentiation such as CD34 or cytokine receptor mRNAs and transcription factors associated with their regulation were assessed. All transcription factors tested were expressed in multipotent progenitors. During lineage-specific differentiation, however, distinct patterns of expression emerged. SCL, GATA-2, and GATA-1 expression sequentially extinguished during erythroid differentiation. PU.1, AML1B, and C/EBPα expression profiles and their relationship to cytokine receptor expression in maturing granulocytes could be distinguished from similar profiles in monocytic cells. These data characterize the dynamics of gene expression accompanying blood cell development and define a signature gene expression pattern for specific stages of hematopoietic differentiation.
Resumo:
Several distinct chromosomal segments were recently identified by cosegregation analysis of polymorphic markers with antibody responsiveness in an F2 cross between high (H) and low (L) antibody responder lines of Biozzi mice. The effect associated with the relevant markers has now been investigated in backcross populations (toward the L line) bred from H and L mice made coisogenic at the H-2 locus. The antibody titers, measured on days 5 and 14 of the primary response to sheep red blood cells, were considered to be two distinct quantitative phenotypes. The results of single or multilocus analyses demonstrated the significant involvement, at one or the two titration times, of Im gene(s) on four distinct chromosomes: 4, 8, 12, and 18. The regions on chromosomes 6 and 10 have a lesser but still suggestive effect. The contribution of each locus ranged from 3% to 13%, and together these loci accounted for about 40% of the phenotypic variance at each titration time. The data are compatible with an additive effect of the relevant loci and suggestive of some interaction effects. In a second backcross toward L line, the H line alleles of the putative Im genes on chromosomes 6, 8, and 12 were isolated from each other and their effects were still detected.
Resumo:
Escherichia coli selenophosphate synthetase (SPS, the selD gene product) catalyzes the production of monoselenophosphate, the selenium donor compound required for synthesis of selenocysteine (Sec) and seleno-tRNAs. We report the molecular cloning of human and mouse homologs of the selD gene, designated Sps2, which contains an in-frame TGA codon at a site corresponding to the enzyme’s putative active site. These sequences allow the identification of selD gene homologs in the genomes of the bacterium Haemophilus influenzae and the archaeon Methanococcus jannaschii, which had been previously misinterpreted due to their in-frame TGA codon. Sps2 mRNA levels are elevated in organs previously implicated in the synthesis of selenoproteins and in active sites of blood cell development. In addition, we show that Sps2 mRNA is up-regulated upon activation of T lymphocytes and have mapped the Sps2 gene to mouse chromosome 7. Using the mouse gene isolated from the hematopoietic cell line FDCPmixA4, we devised a construct for protein expression that results in the insertion of a FLAG tag sequence at the N terminus of the SPS2 protein. This strategy allowed us to document the readthrough of the in-frame TGA codon and the incorporation of 75Se into SPS2. These results suggest the existence of an autoregulatory mechanism involving the incorporation of Sec into SPS2 that might be relevant to blood cell biology. This mechanism is likely to have been present in ancient life forms and conserved in a variety of living organisms from all domains of life.
Resumo:
Efficient and safe heparin anticoagulation has remained a problem for continuous renal replacement therapies and intermittent hemodialysis for patients with acute renal failure. To make heparin therapy safer for the patient with acute renal failure at high risk of bleeding, we have proposed regional heparinization of the circuit via an immobilized heparinase I filter. This study tested a device based on Taylor-Couette flow and simultaneous separation/reaction for efficacy and safety of heparin removal in a sheep model. Heparinase I was immobilized onto agarose beads via cyanogen bromide activation. The device, referred to as a vortex flow plasmapheretic reactor, consisted of two concentric cylinders, a priming volume of 45 ml, a microporous membrane for plasma separation, and an outer compartment where the immobilized heparinase I was fluidized separately from the blood cells. Manual white cell and platelet counts, hematocrit, total protein, and fibrinogen assays were performed. Heparin levels were indirectly measured via whole-blood recalcification times (WBRTs). The vortex flow plasmapheretic reactor maintained significantly higher heparin levels in the extracorporeal circuit than in the sheep (device inlet WBRTs were 1.5 times the device outlet WBRTs) with no hemolysis. The reactor treatment did not effect any physiologically significant changes in complete blood cell counts, platelets, and protein levels for up to 2 hr of operation. Furthermore, gross necropsy and histopathology did not show any significant abnormalities in the kidney, liver, heart, brain, and spleen.
Resumo:
Thalassemia is a heritable human anemia caused by a variety of mutations that affect expression of the α- or the β-chain of hemoglobin. The expressivity of the phenotype is likely to be influenced by unlinked modifying genes. Indeed, by using a mouse model of α-thalassemia, we find that its phenotype is strongly influenced by the genetic background in which the α-thalassemia mutation resides [129sv/ev/129sv/ev (severe) or 129sv/ev/C57BL/6 (mild)]. Linkage mapping indicates that the modifying gene is very tightly linked to the β-globin locus (Lod score = 13.3). Furthermore, the severity of the phenotype correlates with the size of β-chain-containing inclusion bodies that accumulate in red blood cells and likely accelerate their destruction. The β-major globin chains encoded by the two strains differ by three amino acids, one of which is a glycine-to-cysteine substitution at position 13. The Cys-13 should be available for interchain disulfide bridging and consequent aggregation between excess β-chains. This normal polymorphic variation between murine β-globin chains could account for the modifying action of the unlinked β-globin locus. Here, the variation in severity of the phenotype would not depend on a change in the ratio between α- and β-chains but on the chemical nature of the normal β-chain, which is in excess. This work also indicates that modifying genes can be normal variants that—absent an apparent physiologic rationale—may be difficult to identify on the basis of structure alone.
Resumo:
To identify genes involved in macrophage development, we used the differential display technique and compared the gene expression profiles for human myeloid HL-60 leukemia cell lines susceptible and resistant to macrophage maturation. We identified a gene coding for a protein kinase, protein kinase X (PRKX), which was expressed in the maturation-susceptible, but not in the resistant, cell line. The expression of the PRKX gene was found to be induced during monocyte, macrophage, and granulocyte maturation of HL-60 cells. We also studied the expression of the PRKX gene in 12 different human tissues and transformed cell lines and found that, among these tissues and cell types, the PRKX gene is expressed only in blood. Among the blood cell lineages, the PRKX gene is specifically expressed in macrophages and granulocytes. Antisense inhibition of PRKX expression blocked terminal development in both the leukemic HL-60 cells and normal peripheral blood monocytes, implying that PRKX is a key mediator of macrophage and granulocyte maturation. Using the HL-60 cell variant deficient in protein kinase C-β (PKC-β) and several stable PKC-β transfectants, we found that PRKX gene expression is under control of PKC-β; hence PRKX is likely to act downstream of this PKC isozyme in the same signal transduction pathway leading to macrophage maturation.
Resumo:
Metastasis is the primary cause of death in human breast cancer. Metastasis to bone, lungs, liver, and brain involves dissemination of breast cancer cells via the bloodstream and requires adhesion within the vasculature. Blood cell adhesion within the vasculature depends on integrins, a family of transmembrane adhesion receptors, and is regulated by integrin activation. Here we show that integrin αvβ3 supports breast cancer cell attachment under blood flow conditions in an activation-dependent manner. Integrin αvβ3 was found in two distinct functional states in human breast cancer cells. The activated, but not the nonactivated, state supported tumor cell arrest during blood flow through interaction with platelets. Importantly, activated αvβ3 was expressed by freshly isolated metastatic human breast cancer cells and variants of the MDA-MB 435 human breast cancer cell line, derived from mammary fat pad tumors or distant metastases in severe combined immunodeficient mice. Expression of constitutively activated mutant αvβ3D723R, but not αvβ3WT, in MDA-MB 435 cells strongly promoted metastasis in the mouse model. Thus breast cancer cells can exhibit a platelet-interactive and metastatic phenotype that is controlled by the activation of integrin αvβ3. Consequently, alterations within tumors that lead to the aberrant control of integrin activation are expected to adversely affect the course of human breast cancer.
Resumo:
We report a novel approach to the generation of monoclonal antibodies based on the molecular cloning and expression of immunoglobulin variable region cDNAs generated from single rabbit or murine lymphocytes that were selected for the production of specific antibodies. Single cells secreting antibodies for a specific peptide either from gp116 of the human cytomegalovirus or from gp120 of HIV-1 or for sheep red blood cells were selected using antigen-specific hemolytic plaque assays. Sheep red blood cells were coated with specific peptides in a procedure applicable to any antigen that can be biotinylated. Heavy- and light-chain variable region cDNAs were rescued from single cells by reverse transcription-PCR and expressed in the context of human immunoglobulin constant regions. These chimeric murine and rabbit monoclonal antibodies replicated the target specificities of the original antibody-forming cells. The selected lymphocyte antibody method exploits the in vivo mechanisms that generate high-affinity antibodies. This method can use lymphocytes from peripheral blood, can exploit a variety of procedures that identify individual lymphocytes producing a particular antibody, and is applicable to the generation of monoclonal antibodies from many species, including humans.
Resumo:
The translocation found in acute promyelocytic leukemia rearranges the promyelocytic leukemia gene (PML) on chromosome 15 with the retinoic acid receptor alpha (RARalpha) on chromosome 17. This yields a fusion transcript, PML/RARalpha, a transcription factor with reported dominant negative functions in the absence of hormone. Clinical remissions induced with all-trans retinoic acid (RA) treatment in acute promyelocytic leukemia are linked to PML/RARalpha expression in leukemic cells. To evaluate the PML/RARalpha role in myelopoiesis, transgenic mice expressing PML/RARalpha were engineered. A full-length PML/RARalpha cDNA driven by the CD11b promoter was expressed in transgenic mice. Expression was confirmed in the bone marrow with a reverse transcription PCR assay. Basal total white blood cell and granulocyte counts did not appreciably differ between PML/RARalpha transgenic and control mice. Cell sorter analysis of CD11b+ bone marrow cells revealed similar CD11b+ populations in transgenic and control mice. However, in vitro clonal growth assays performed on peripheral blood from transgenic versus control mice revealed a marked reduction of myeloid progenitors, especially in those responding to granulocyte/ macrophage colony-stimulating factor. Granulocyte/macrophage colony-stimulating factor and kit ligand cotreatment did not overcome this inhibition. Impaired myelopoiesis in vivo was shown by stressing these mice with sublethal irradiation. Following irradiation, PML/RARalpha transgenic mice, as compared with controls, more rapidly depressed peripheral white blood cell and granulocyte counts. As expected, nearly all control mice (94.4%) survived irradiation, yet this irradiation was lethal to 45.8% of PML/RARalpha transgenic mice. Lethality was associated with more severe leukopenia in transgenic versus control mice. Retinoic acid treatment of irradiated PML/RARalpha mice enhanced granulocyte recovery. These data suggest that abnormal myelopoiesis due to PML/RARalpha expression is an early event in oncogenic transformation.