972 resultados para Receptor-like kinase
Resumo:
Toll-like receptors (TLRs) serve to initiate inflammatory signalling in response to the detection of conserved microbial molecules or products of host tissue damage. Recent evidence suggests that TLR-signalling plays a considerable role in a number of inflammatory diseases, including atherosclerosis and arthritis. Agents which modulate TLR-signalling are, therefore, receiving interest in terms of their potential to modify inflammatory disease processes. One such family of molecules, the oxidised phospholipids (OxPLs), which are formed as a result of inflammatory events and accumulate at sites of chronic inflammation, have been shown to modulate TLR-signalling in both in vitro and in vivo systems. As the interaction between OxPLs and TLRs may play a significant role in chronic inflammatory disease processes, consideration is given in this review to the potential role of OxPLs in the regulation of TLR-signalling.
Resumo:
To determine whether non-enterobacterial endotoxins, which are likely to constitute the majority of the circulating endotoxin pool, may stimulate coronary artery endothelial cell activation. Interleukin-8 secretion, monocyte adhesion, and E-selectin expression were measured in human umbilical vein endothelial cells (HUVECs) and coronary artery endothelial cells (HCAECs) challenged in vitro with highly purified endotoxins of common host colonisers Escherichia coli, Porphyromonas gingivalis, Pseudomonas aeruginosa, and Bacteroides fragilis. HCAECs but not HUVECs expressed Toll-like receptor (TLR)-2 and were responsive to non-enterobacterial endotoxins. Transfection of TLR-deficient HEK-293 cells with TLR2 or TLR4/MD2 revealed that while E. coli endotoxin utilised solely TLR4 to signal, the endotoxins, deglycosylated endotoxins (lipid-A), and whole heat-killed bacteria of the other species stimulated TLR2-but not TLR4-dependent cell-signalling. Blockade of TLR2 with neutralizing antibody prevented HCAEC activation by non-enterobacterial endotoxins. Comparison of each endotoxin with E. coli endotoxin in limulus amoebocyte lysate assay revealed that the non-enterobacterial endotoxins are greatly underestimated by this assay, which has been used in all previous studies to estimate plasma endotoxin concentrations. Circulating non-enterobacterial endotoxins may be an underestimated contributor to endothelial activation and atherosclerosis in individuals at risk of increased plasma endotoxin burden.
Resumo:
Toll-like receptor (TLR)-4 signalling has been shown to accelerate atherosclerosis. As oxidised phospholipids are present in atherosclerotic plaque and have been shown to modulate TLR4 signalling, we investigated the role of oxidised 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine (OxPAPC) in the regulation of TLR 1, 2, 4 and 6 signalling. Unlike established TLR agonists, OxPAPC did not induce NF-?B-dependent gene expression in monocytic THP-1 cells, human aortic endothelial cells or TLR-deficient HEK-293 cells transfected with TLRs 1, 2, 4 or 6. OxPAPC induction of IL-8 was not blocked by the TLR4 specific antagonist Rhodobacter sphaeroides LPS in human aortic endothelial cells, though OxPAPC potently inhibited TLR4 mediated IL-8 induction in these cells. OxPAPC upregulated IL-8 production in TLR4 deficient HEK-293 cells and this was not increased following TLR4 overexpression. Lipids extracted from carotid atherectomy samples did not stimulate TLR 1, 2, 4 or 6 signalling in a HEK-293 transfection assay. TLR4 signalling does not contribute to OxPAPC induced IL-8 expression in human epithelial HEK-293, monocytic THP-1 or aortic endothelial cells. As lipids extracted from diseased human artery also induced no TLR signalling, it is likely that the TLR-activating materials contributing to atherosclerosis are not of endogenous lipid origin.
Resumo:
Background and Purpose The glucagon-like peptide 1 (GLP-1) receptor performs an important role in glycaemic control, stimulating the release of insulin. It is an attractive target for treating type 2 diabetes. Recently, several reports of adverse side effects following prolonged use of GLP-1 receptor therapies have emerged: most likely due to an incomplete understanding of signalling complexities. Experimental Approach We describe the expression of the GLP-1 receptor in a panel of modified yeast strains that couple receptor activation to cell growth via single Gα/yeast chimeras. This assay enables the study of individual ligand-receptor G protein coupling preferences and the quantification of the effect of GLP-1 receptor ligands on G protein selectivity. Key Results The GLP-1 receptor functionally coupled to the chimeras representing the human Gαs, Gαi and Gαq subunits. Calculation of the dissociation constant for a receptor antagonist, exendin-3 revealed no significant difference between the two systems. We obtained previously unobserved differences in G protein signalling bias for clinically relevant therapeutic agents, liraglutide and exenatide; the latter displaying significant bias for the Gαi pathway. We extended the use of the system to investigate small-molecule allosteric compounds and the closely related glucagon receptor. Conclusions and Implications These results provide a better understanding of the molecular events involved in GLP-1 receptor pleiotropic signalling and establish the yeast platform as a robust tool to screen for more selective, efficacious compounds acting at this important class of receptors in the future. © 2014 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society.
Resumo:
Objective - Soluble vascular endothelial growth factor receptor–1 (also know as soluble fms-like tyrosine kinase [sFlt]-1) is a key causative factor of preeclampsia. Resveratrol, a plant phytoalexin, has antiinflammatory and cardioprotective properties. We sought to determine the effect of resveratrol on sFlt-1 release. Study Design - Human umbilical vein endothelial cells, transformed human trophoblast-8 (HTR/SVneo)-8/SVneo trophoblast cells, or placental explants were incubated with cytokines and/or resveratrol. Conditioned media were assayed for sFlt-1 by enzyme-linked immunosorbent assay and cell proteins used for Western blotting. Results - Resveratrol inhibited cytokine-induced release of sFlt-1 from normal placental explants and from preeclamptic placental explants. Preincubation of human umbilical vein endothelial cells or HTR-8/SVneo cells with resveratrol abrogated sFlt-1 release. Resveratrol prevented the up-regulation of early growth response protein-1 (Egr-1), a transcription factor necessary for induction of the vascular endothelial growth factor receptor–1 gene and caused up-regulation of heme oxygenase–1, a cytoprotective enzyme found to be dysfunctional in preeclampsia. Conclusion - In summary, resveratrol can inhibit sFlt-1 release and up-regulate heme oxygenase–1; thus, may offer therapeutic potential in preeclampsia.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Insulin-like Growth Factor-1 (IGF-1) signalling promotes cell growth and is associated with cancer progression, including metastasis, epithelial-mesenchymal transition (EMT), and resistance to therapy. Mitochondria play an essential role in cancer cell metabolism and accumulating evidence demonstrates that dysfunctional mitochondria associated with release of mitochondrial reactive oxygen species (ROS) can influence cancer cell phenotype and invasive potential. We previously isolated a mitochondrial UTP carrier (PNC1/SLC25A33) whose expression is regulated by IGF-1, and which is essential for mitochondrial maintenance. PNC1 suppression in cancer cells results in mitochondrial dysfunction and acquisition of a profound ROS-dependent invasive (EMT) phenotype. Moreover, over-expression of PNC1 in cancer cells that exhibit an EMT phenotype is sufficient to suppress mitochondrial ROS production and reverse the invasive phenotype. This led us to investigate the IGF-1-mitochondrial signalling axis in cancer cells. We found that IGF-1 signalling supports increased mitochondrial mass and Oxphos potential through a PI3K dependant pathway. Acute inhibition of IGF-1R activity with a tyrosine kinase inhibitor results in dysfunctional mitochondria and cell death. We also observed an adaptive response to IGF-1R inhibition upon prolonged exposure to the kinase inhibitor, where increased expression of the EGF receptor can compensate for loss of mitochondrial mass through activation of PI3K/mTOR signalling. However, these cells exhibit impaired mitochondrial biogenesis and mitophagy. We conclude that the IGF-1 is required for mitochondrial maintenance and biogenesis in cancer cells, and that pharmacological inhibition of this pathway may induce mitochondrial dysfunction and may render the cells more sensitive to glycolysis-targeted drugs.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
The efficacy of tyrosine kinase (TK) inhibitors on non-cycling acute myeloid leukaemia (AML) cells, previously shown to have potent tumourigenic potential, is unknown. This pilot study describes the first attempt to characterize non-cycling cells from a small series of human FMS-like tyrosine kinase 3 (FLT3) mutation positive samples. CD34+ AML cells from patients with FLT3 mutation positive AML were cultured on murine stroma. In expansion cultures, non-cycling cells were found to retain CD34+ expression in contrast to dividing cells. Leukaemic gene rearrangements could be detected in non-cycling cells, indicating their leukaemic origin. Significantly, the FLT3-internal tandem duplication (ITD) mutation was found in the non-cycling fraction of four out of five cases. Exposure to the FLT3-directed inhibitor TKI258 clearly inhibited the growth of AML CD34+ cells in short-term cultures and colony-forming unit assays. Crucially, non-cycling cells were not eradicated, with the exception of one case, which exhibited exquisite sensitivity to the compound. Moreover, in longer-term cultures, TKI258-treated non-cycling cells showed no growth impairment compared to treatment-naive non-cycling cells. These findings suggest that non-cycling cells in AML may constitute a disease reservoir that is resistant to TK inhibition. Further studies with a larger sample size and other inhibitors are warranted.
Resumo:
The innate immune system recognizes microbial features leading to the activation of the adaptive immune system. The role of Toll-like receptor 9 (TLR9) is to recognize microbial DNA. In addition to immune cells, TLR9 is widely expressed in breast cancer in addition to other cancers. Breast cancer is the most common cancer in women, affecting approximately one in eight in industrialized countries. In the clinical setting, breast cancer is divided into three clinical subtypes with type-specific treatments. These subtypes are estrogen receptor (ER)-positive, HER2-positive and triple-negative (TNBC) breast cancer. TNBC is the most aggressive subtype that can be further divided into several subtypes. TNBC tumors lack ER, progesterone receptor and HER2 receptor. Therefore, the current clinically used targeted therapies are not suitable for TNBC treatment as TNBC is a collection of diseases rather than one entity. Some TNBC patients are cured with standard chemotherapy, while others rapidly die due to the disease. There are no clinically used iomarkers which would help in predicting which patients respond to chemotherapy. During this thesis project, we discovered a novel good-prognosis TNBC subtype. These tumors have high TLR9 expression levels. Our findings suggest that TLR9 screening in TNBC patient populations might help to identify the patients that are at the highest risk regarding a relapse. To gain better understanding on the role of TLR9 in TNBC, we developed an animal model which mimicks this disease. We discovered that suppression of TLR9 expression in TNBC cells increases their invasive properties in hypoxia. In line with the clinical findings, TNBC cells with low TLR9 expression also formed more aggressive tumors in vivo. TLR9 expression did not, however, affect TNBC tumor responses to doxorubicin. Our results suggest that tumor TLR9 expression may affect chemotherapyrelated immune responses, however, this requires further investigation. Our other findings revealed that DNA released by chemotherapy-killed cells induces TLR9-mediated invasion in living cancer cells. Normally, extracellular self-DNA is degraded by enzymes, but during massive cell death, for example during chemotherapy, the degradation machinery may be exhausted and self-DNA is taken up into living cells activating TLR9. We also discovered that the malaria drug chloroquine, an inhibitor of autophagy and TLR9 signalling does not inhibit TNBC growth in vivo, independently of the TLR9 status. Finally, we found that ERα as well as the sex hormones estrogen and testosterone regulate TLR9 expression and activity in breast cancer cells in vitro. As a conclusion, we suggest that TLR9 is a potential biomarker in TNBC. ------- Sisäsyntyisen immuniteetin tehtävä on tunnistaa mikrobien molekyylirakenteita, mikä saa aikaan adaptiivisen immuunijärjestelmän aktivoitumisen. Tollin kaltainen reseptori 9 (TLR9) on dna:ta tunnistava sisäsyntyisen immuniteetin reseptori, jota ilmennetään myös useissa syövissä, kuten rintasyövässä. Rintasyöpä on naisten yleisin syöpä, johon joka kahdeksas nainen sairastuu elämänsä aikana. Kliinisesti rintasyöpä jaotellaan kolmeen alatyyppiin, joista kolmoisnegatiivinen rintasyöpä on aggressiivisin. Tämän tyypin syövät eivät ilmennä hormonireseptoreja (estrogeeni- ja progesteronireseptori) tai HER2-reseptoria. Tästä johtuen kolmoisnegatiivisten potilaiden hoitoon ei voida käyttää rintasyövän nykyisten hoitosuositusten mukaisia täsmähoitoja. Kolmoisnegatiivinen rintasyöpä ei kuitenkaan ole yksi sairaus, koska molekyylitasolla sen on osoitettu koostuvan lukuisista, biologialtaan erilaisista syöpämuodoista. Tällä hetkellä kliinisessä käytössä ei ole biomarkkeria, jonka avulla kolmoisnegatiivisen rintasyövän alatyypit voisi erottaa toisistaan. Löysimme uuden kolmoisnegatiivisen syövän alatyypin, joka ilmentää vain vähän TLR9-proteiinia. Tällä alatyypillä on erittäin huono ennuste ja tulostemme perusteella TRL9-tason selvittäminen voisi seuloa huonoennusteiset syövät kolmoisnegatiivisten syöpien joukosta. Kehitimme eläinmallin, jolla voidaan tutkia matalan ja korkean TLR9-tason vaikutuksia kolmoisnegatiivisten kasvainten hoitovasteeseen. Toinen löytömme oli, että kemoterapialla tapettujen syöpäsolujen dna saa aikaan elävien syöpäsolujen TLR9-välitteistä invaasiota. Normaalisti entsyymit hajoittavat yksilön oman solunulkoisen dna:n. Erikoistilanteissa, kuten syöpähoitojen yhteydessä, jolloin solukuolema on massiivista, elimistön oma koneisto ei ehdi tuhoamaan solunulkoista dna:ta ja sitä voi kertyä eläviin soluihin, joissa se aktivoi TLR9:n. Kolmanneksi havaitsimme, että malarialääke klorokiini, joka estää TLR9:n toimintaa ja jolla on syövänvastaisia vaikutuksia soluviljelyolosuhteissa, ei estänyt TLR9-positiivisten tai TLR9-negatiivisten kasvainten kasvua käyttämässämme eläinmallissa. Neljänneksi soluviljelykokeittemme tulokset osoittivat, että sukupuolihormonit estrogeeni ja testosteroni sekä estrogeenireseptori osallistuvat TLR9:n ilmentymisen ja aktiivisuuden säätelyyn. Tuloksemme osoittavat, että TLR9 potentiaalinen biomarkkeri kolmoisnegatiivisessa rintasyövässä.
Resumo:
Background: Recurrent spontaneous abortion is one of the diseases that can lead to physical, psychological, and, economical problems for both individuals and society. Recently a few numbers of genetic polymorphisms in kinase insert domain-containing receptor (KDR) gene are examined that can endanger the life of the fetus in pregnant women. Objective: The risk of KDR gene polymorphisms was investigated in Iranian women with idiopathic recurrent spontaneous abortion (RSA). Materials and Methods: A case controlled study was performed. One hundred idiopathic recurrent spontaneous abortion patients with at least two consecutive pregnancy losses before 20 weeks of gestational age with normal karyotypes were included in the study. Also, 100 healthy women with at least one natural pregnancy were studied as control group. Two functional SNPs located in KDR gene; rs1870377 (Q472H), and rs2305948 (V297I) as well as one tag SNP in the intron region (rs6838752) were genotyped by using PCR based restriction fragment length polymorphism (PCR-RFLP) technique. Haplotype frequency was determined for these three SNPs’ genotypes. Analysis of genetic STRUCTURE and K means clustering were performed to study genetic variation. Results: Functional SNP (rs1870377) was highly linked to tag SNP (rs6838752) (D´ value=0. 214; χ2 = 16.44, p<0. 001). K means clustering showed that k = 8 as the best fit for the optimal number of genetic subgroups in our studied materials. This result was in agreement with Neighbor Joining cluster analysis. Conclusion: In our study, the allele and genotype frequencies were not associated with RSA between patient and control individuals. Inconsistent results in different populations with different allele frequencies among RSA patients and controls may be due to ethnic variation and used sample size.
Resumo:
Ewing sarcoma (EWS) and CIC-DUX4 sarcoma (CDS) are pediatric fusion gene-driven tumors of mesenchymal origin characterized by an extremely stable genome and limited clinical solutions. Post-transcriptional regulatory mechanisms are crucial for understanding the development of this class of tumors. RNA binding proteins (RBPs) play a crucial role in the aggressiveness of these tumors. Numerous RBP families are dysregulated in cancer, including IGF2BPs. Among these, IGF2BP3 is a negative prognostic factor in EWS because it promotes cell growth, chemoresistence, and induces the metastatic process. Based on preliminary RNA sequencing data from clinical samples of EWS vs CDS patients, three major axes that are more expressed in CDS have been identified, two of which are dissected in this PhD work. The first involves the transcription factor HMGA2, IGF2BP2-3, and IGF2; the other involves the ephrin receptor system, particularly EphA2. EphA2 is involved in numerous cellular functions during embryonic stages, and its increased expression in adult tissues is often associated with pathological conditions. In tumors, its role is controversial because it can be associated with both pro- and anti-tumoral mechanisms. In EWS, it has been shown to play a role in promoting cell migration and neoangiogenesis. Our study has confirmed that the HMGA2/IGF2BPs/IGF2 axis contributes to CDS malignancy, and Akt hyperactivation has a strong impact on migration. Using loss/gain of function models for EphA2, we confirmed that it is a substrate of Akt, and Akt hyperactivation in CDS triggers ligand-independent activation of EphA2 through phosphorylation of S897. Moreover, the combination of Trabectedin and NVP/BEZ235 partially inhibits Akt/mTOR activation, resulting in reduced tumor growth in vivo. Inhibition of EphA2 through ALWII 41_27 significantly reduces migration in vitro. The project aim is the identification of target molecules in CDS that can distinguish it from EWS and thus develop new targeted therapeutic strategies.
Resumo:
Plants are sessile organisms and have evolved to tolerate a constantly changing environment. After the onset of different stress conditions, calcineurin B-like (CBL) proteins can sense calcium signals and activate CBL-interacting protein kinase (CIPK) proteins, which can phosphorylate downstream proteins to reestablish plant homeostasis. Previous studies in the bioenergy crop sugarcane showed that the ScCIPK8 gene is induced by drought stress and is also related to sucrose content. Here, we have characterized the protein-protein interactions of ScCIPK8 with six CBL proteins (ScCBL1, ScCBL2, ScCBL3, ScCBL6, ScCBL9, and ScCBL10). Yeast two-hybrid assays showed that ScCIPK8 interacts with ScCBL1, ScCBL3, and ScCBL6. Bimolecular fluorescence complementation assays confirmed in planta the interactions that were observed in yeast cells. These findings give insights on the regulatory networks related to sugar accumulation and drought stress responses in sugarcane.