980 resultados para Receptor Subunit Isoforms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activation of functional responses in rabbit peritoneal neutrophils by gramicidin and the chemotactic peptide, N-formyl-methionyl-leucyl-phenylalanine methyl ester, was studied. Gramicidin activated superoxide generation, lysosomal enzyme release and a decrease in fluorescence of chlortetracycline-loaded cells, as for the chemotactic peptide. The maximum intensities of the responses by gramicidin were lower than that by chemotactic peptide. Responses by both these peptides could be inhibited by t-butyloxycarbonyl-methionyl-leucyl-phenylalanine, a chemotactic peptide receptor antagonist. Gramicidin gave responses at low doses comparable to that of the chemotactic peptide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The upstream proinflammatory interleukin-1 (IL-1) cytokines, together with a naturally occurring IL-1 receptor antagonist (IL-1Ra), play a significant role in several diseases and physiologic conditions. The IL-1 proteins affect glucose homeostasis at multiple levels contributing to vascular injuries and metabolic dysregulations that precede diabetes. An association between IL-1 gene variations and IL-1Ra levels has been suggested, and genetic studies have reported associations with metabolic dysregulation and altered inflammatory responses. The principal aims of this study were to: 1) examine the associations of IL-1 gene variation and IL-1Ra expression in the development and persistence of thyroid antibodies in subacute thyroiditis; 2) investigate the associations of common variants in the IL-1 gene family with plasma glucose and insulin concentrations, glucose homeostasis measures and prevalent diabetes in a representative population sample; 3) investigate genetic and non-genetic determinants of IL-1Ra phenotypes in a cross-sectional setting in three independent study populations; 4) investigate in a prospective setting (a) whether variants of the IL-1 gene family are predictors for clinically incident diabetes in two population-based observational cohort studies; and (b) whether the IL-1Ra levels predict the progression of metabolic syndrome to overt diabetes during the median follow-up of 10.8 and 7.1 years. Results from on patients with subacte thyroiditis showed that the systemic IL-1Ra levels are elevated during a specific proinflammatory response and they correlated with C-reactive protein (CRP) levels. Genetic variation in the IL-1 family seemed to have an association with the appearance of thyroid peroxidase antibodies and persisting local autoimmune responses during the follow-up. Analysis of patients suffering from diabetes and metabolic traits suggested that genetic IL-1 variation and IL-1Ra play a role in glucose homeostasis and in the development of type 2 diabetes. The coding IL-1 beta SNP rs1143634 was associated with traits related to insulin resistance in cross-sectional analyses. Two haplotype variants of the IL-1 beta gene were associated with prevalent diabetes or incident diabetes in a prospective setting and both of these haplotypes were tagged by rs1143634. Three variants of the IL-1Ra gene and one of the IL-1 beta gene were consistently identified as significant, independent determinants of the IL-1Ra phenotype in two or three populations. The proportion of the phenotypic variation explained by the genetic factors was modest however, while obesity and other metabolic traits explained a larger part. Body mass index was the strongest predictor of systemic IL-1Ra concentration overall. Furthermore, the age-adjusted IL-1Ra concentrations were elevated in individuals with metabolic syndrome or diabetes when compared to those free of metabolic dysregulation. In prospective analyses the systemic IL-1Ra levels were found as independent predictors for the development of diabetes in people with metabolic syndrome even after adjustment for multiple other factors, including plasma glucose and CRP levels. The predictive power of IL-1Ra was better than that of CRP. The prospective results also provided some evidence for a role of common IL-1 alpha promoter SNP rs1800587 in the development of type 2 diabetes among men and suggested that the role may be gender specific. Likewise, common variations in the IL-1 beta coding region may have a gender specific association with diabetes development. Further research on the potential benefits of IL-1Ra measurements in identifying individuals at high risk for diabetes, who then could be targeted for specific treatment interventions, is warranted. It has been reported in the recent literature that IL-1Ra secreted from adipose tissue has beneficial effects on glucose homeostasis. Furthermore, treatment with recombinant human IL-1Ra has been shown to have a substantial therapeutic potential. The genetic results from the prospective analyses performed in this study remain inconclusive, but together with the cross-sectional analyses they suggest gender-specific effects of the IL-1 variants on the risk of diabetes. Larger studies with more extensive genotyping and resequencing may help to pinpoint the exact variants responsible and to further elucidate the biological mechanisms for the observed associations. This would improve our understanding of the pathways linking inflammation and obesity with glucose and insulin metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Specific penicillin-carrier receptor proteins (CRP) have been isolated from the sera of penicillin allergic rabbits and human subjects in the unconjugated native state in electrophoretically homogeneous form by employing a synthetic polymeric affinity template containing the 7-deoxy analogue of penicillin G. The synthesis of the 7-deoxy analogue has been described. In this affinity system the antipenicillin-antibody is desorbed by 0·9M thiourea and the CRP in 8M urea. The CRP after incubation with penicillin is converted into the full-fledged antigen. Studies on the origin of CRP and the nature of antibody as well as comparative studies on the properties of the rabbit antibody and those of antibodies elicited by a BSA-BPO conjugate are reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pre-eclampsia is a pregnancy complication that affects about 5% of all pregnancies. It is known to be associated with alterations in angiogenesis -related factors, such as vascular endothelial growth factor (VEGF). An excess of antiangiogenic substances, especially the soluble receptor-1 of VEGF (sVEGFR-1), has been observed in maternal circulation after the onset of the disease, probably reflecting their increased placental production. Smoking reduces circulating concentrations of sVEGFR-1 in non-pregnant women, and in pregnant women it reduces the risk of pre-eclampsia. Soluble VEGFR-1 acts as a natural antagonist of VEGF and placental growth factor (PlGF) in human circulation, holding a promise for potential therapeutic use. In fact, it has been used as a model to generate a fusion protein, VEGF Trap , which has been found effective in anti-angiogenic treatment of certain tumors and ocular diseases. In the present study, we evaluated the potential use of maternal serum sVEGFR-1, Angiopoietin-2 (Ang-2) and endostatin, three central anti-angiogenic markers, in early prediction of subsequent pre-eclampsia. We also studied whether smoking affects circulating sVEGFR-1 concentrations in pregnant women or their first trimester placental secretion and expression in vitro. Last, in order to allow future discussion on the potential therapy based on sVEGFR-1, we determined the biological half-life of endogenous sVEGFR-1 in human circulation, and measured the concomitant changes in free VEGF concentrations. Blood or placental samples were collected from a total of 268 pregnant women between the years 2001 2007 in Helsinki University Central Hospital for the purposes above. The biomarkers were measured using commercially available enzyme-linked immunosorbent assays (ELISA). For the analyses of sVEGFR-1, Ang-2 and endostatin, a total of 3 240 pregnant women in the Helsinki area were admitted to blood sample collection during two routine ultrasoundscreening visits at 13.7 ± 0.5 (mean ± SD) and 19.2 ± 0.6 weeks of gestation. Of them, 49 women later developing pre-eclampsia were included in the study. Their disease was further classified as mild in 29 and severe in 20 patients. Isolated early-onset intrauterine growth retardation (IUGR) was diagnosed in 16 women with otherwise normal medical histories and uncomplicated pregnancies. Fifty-nine women remaining normotensive, non-proteinuric and finally giving birth to normal-weight infants were picked to serve as the control population of the study. Maternal serum concentrations of Ang-2, endostatin and sVEGFR-1, were increased already at 16 20 weeks of pregnancy, about 13 weeks before the clinical manifestation of preeclampsia. In addition, these biomarkers could be used to identify women at risk with a moderate precision. However, larger patient series are needed to determine whether these markers could be applied for clinical use to predict preeclampsia. Intrauterine growth retardation (IUGR), especially if noted at early stages of pregnancy and not secondary to any other pregnancy complication, has been suggested to be a form of preeclampsia compromising only the placental sufficiency and the fetus, but not affecting the maternal endothelium. In fact, IUGR and preeclampsia have been proposed to share a common vascular etiology in which factors regulating early placental angiogenesis are likely to play a central role. Thus, these factors have been suggested to be involved in the pathogenesis of IUGR. However, circulating sVEGFR-1, Ang-2 and endostatin concentrations were unaffected by subsequent IUGR at early second trimester. Furthermore, smoking was not associated with alterations in maternal circulating sVEGFR-1 or its placental production. The elimination of endogenous sVEGFR-1 after pregnancy was calculated from serial samples of eight pregnant women undergoing elective Caesarean section. As typical for proteins in human compartments, the elimination of sVEGFR-1 was biphasic, containing a rapid halflife of 3.4 h and a slow one of 29 h. The decline in sVEGFR-1 concentrations after mid-trimester legal termination of pregnancy was accompanied with a simultaneous increase in the serum levels of free VEGF so that within a few days after pregnancy VEGF dominated in the maternal circulation. Our study provides novel information on the kinetics of endogenous sVEGFR-1, which serves as a potential tool in the development of new strategies against diseases associated with angiogenic imbalance and alterations in VEGF signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Escherichia coli RNA polymerase is a multi-subunit enzyme containing alpha(2)beta beta'omega sigma, which transcribes DNA template to intermediate RNA product in a sequence specific manner. Although most of the subunits are essential for its function, the smallest subunit omega (average molecular mass similar to 10,105 Da) can be deleted without affecting bacterial growth. Creating a mutant of the omega subunit can aid in improving the understanding of its role. Sequencing of rpoZ gene that codes for omega subunit from a mutant variant suggested a substitution mutation at position 60 of the protein: asparagine (N) -> aspartic acid (D). This mutation was verified at the protein level by following a typical mass spectrometry (MS) based bottom-up proteomic approach. Characterization of in-gel trypsin digested samples by reverse phase liquid chromatography (LC) coupled to electrospray ionization (ESI)-tandem mass spectrometry (MS/MS) enabled in ascertaining this mutation. Electron transfer dissociation (ETD) of triply charged (M + 3H)(3+)] tryptic peptides (residues 53-67]), EIEEGLINNQILDVR from wild-type and EIEEGLIDNQILDVR from mutant, facilitated in unambiguously determining the site of mutation at residue 60.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acetohydroxyacid synthase (AHAS) is an enzyme involved in the biosynthesis of the branched chain amino acids viz, valine, leucine and isoleucine. The activity of this enzyme is regulated through feedback inhibition by the end products of the pathway. Here we report the backbone and side-chain assignments of ilvN, the 22 kDa dimeric regulatory subunit of E. coli AHAS isoenzyme I, in the valine bound form. Detailed analysis of the structure of ilvN and its interactions with the catalytic subunit of E. coli AHAS I will help in understanding the mechanism of activation and regulation of the branched chain amino acid biosynthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The significance of two interface arginine residues on the structural integrity of an obligatory dimeric enzyme thymidylate synthase (TS) from Lactobacillus casei was investigated by thermal and chemical denaturation. While the R178F mutant showed apparent stability to thermal denaturation by its decreased tendency to aggregate, the Tm of the R218K mutant was lowered by 5 degrees C. Equilibrium denaturation studies in guanidinium chloride (GdmCl) and urea indicate that in both the mutants, replacement of Arg residues results in more labile quaternary and tertiary interactions. Circular dichroism studies in aqueous buffer suggest that the protein interior in R218K may be less well-packed as compared to the wild type protein. The results emphasize that quaternary interactions may influence the stability of the tertiary fold of TS. The amino acid replacements also lead to notable alteration in the ability of the unfolding intermediate of TS to aggregate. The aggregated state of partially unfolded intermediate in the R178F mutant is stable over a narrower range of denaturant concentrations. In contrast, there is an exaggerated tendency on the part of R218K to aggregate in intermediate concentrations of the denaturant. The 3 A crystal structure of the R178F mutant reveals no major structural change as a consequence of amino acid substitution. The results may be rationalized in terms of mutational effects on both the folded and unfolded state of the protein. Site specific amino acid substitutions are useful in identifying specific regions of TS involved in association of non-native protein structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurons can be divided into various classes according to their location, morphology, neurochemical identity and electrical properties. They form complex interconnected networks with precise roles for each cell type. GABAergic neurons expressing the calcium-binding protein parvalbumin (Pv) are mainly interneurons, which serve a coordinating function. Pv-cells modulate the activity of principal cells with high temporal precision. Abnormalities of Pv-interneuron activity in cortical areas have been linked to neuropsychiatric illnesses such as schizophrenia. Cerebellar Purkinje cells are known to be central to motor learning. They are the sole output from the layered cerebellar cortex to deep cerebellar nuclei. There are still many open questions about the precise role of Pv-neurons and Purkinje cells, many of which could be answered if one could achieve rapid, reversible cell-type specific modulation of the activity of these neurons and observe the subsequent changes at the whole-animal level. The aim of these studies was to develop a novel method for the modulation of Pv-neurons and Purkinje cells in vivo and to use this method to investigate the significance of inhibition in these neuronal types with a variety of behavioral experiments in addition to tissue autoradiography, electrophysiology and immunohistochemistry. The GABA(A) receptor γ2 subunit was ablated from Pv-neurons and Purkinje cells in four separate mouse lines. Pv-Δγ2 mice had wide-ranging behavioral alterations and increased GABA-insensitive binding indicative of an altered GABA(A) receptor composition, particularly in midbrain areas. PC-Δγ2 mice experienced little or no motor impairment despite the lack of inhibition in Purkinje cells. In Pv-Δγ2-partial rescue mice, a reversal of motor and cognitive deficits was observed in addition to restoration of the wild-type γ2F77 subunit to the reticular nucleus of thalamus and the cerebellar molecular layer. In PC-Δγ2-swap mice, zolpidem sensitivity was restored to Purkinje cells and the administration of systemic zolpidem evoked a transient motor impairment. On the basis of these results, it is concluded that this new method of cell-type specific modulation is a feasible way to modulate the activity of selected neuronal types. The importance of Purkinje cells to motor control supports previous studies, and the crucial involvement of Pv-neurons in a range of behavioral modalities is confirmed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ternary cobalt(III) complexes CoL(B)] (1-3) of a trianionic tetradentate phenolate-based ligand (L) and phenanthroline bases (B), viz. 1,10-phenanthroline (phen in 1), dipyridoquinoxaline (dpq in 2) and dipyridophenazine (dppz in 3) are synthesized, characterized from X-ray crystallographic, analytical and spectral techniques, and their utility in photodynamic therapy (PDT) of thyroid diseases caused by TSH receptor dysfunction is probed. The complexes display a visible spectral band within the PDT spectral window at similar to 690 nm. Photodynamic potential was estimated through DNA cleavage activity of the dpq and dppz complexes in UV-A light of 365 nm and red light of 676 nm. The reactions proceed via the hydroxyl radical pathway. The complexes retain their DNA photocleavage activity in red light under anaerobic conditions, a situation normally prevails in hypoxic tumor core. Investigation into the photocytotoxic potential of these complexes showed that the dppz complex 3 is approximately 4-fold more active in the HEK293 cells expressing human thyrotropin receptor (HEK293-hTSHR) than in the parental cell line and has an insignificant effect on an unrelated human cervical carcinoma cell line (HeLa). Photoexcitation of complex 3 in HEK293-hTSHR cells leads to damage hTSHR as evidenced from the decrease in cAMP formation both in absence and presence of hTSH and decrease in the TSHR immunofluorescence with a concomitant cytoplasmic translocation of the membrane protein, cadherin. The involvement of hTSHR is evidenced from the ability of complex 3 to bind to the extracellular domain of hTSHR (hTSHR-ECD) with a K-d value of 81 nM and from the photocleavage of hTSHR-ECD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fast excitatory transmission between neurons in the central nervous system is mainly mediated by L-glutamate acting on ligand gated (ionotropic) receptors. These are further categorized according to their pharmacological properties to AMPA (2-amino-3-(5-methyl-3-oxo-1,2- oxazol-4-yl)propanoic acid), NMDA (N-Methyl-D-aspartic acid) and kainate (KAR) subclasses. In the rat and the mouse hippocampus, development of glutamatergic transmission is most dynamic during the first postnatal weeks. This coincides with the declining developmental expression of the GluK1 subunit-containing KARs. However, the function of KARs during early development of the brain is poorly understood. The present study reveals novel types of tonically active KARs (hereafter referred to as tKARs) which play a central role in functional development of the hippocampal CA3-CA1 network. The study shows for the first time how concomitant pre- and postsynaptic KAR function contributes to development of CA3-CA1 circuitry by regulating transmitter release and interneuron excitability. Moreover, the tKAR-dependent regulation of transmitter release provides a novel mechanism for silencing and unsilencing early synapses and thus shaping the early synaptic connectivity. The role of GluK1-containing KARs was studied in area CA3 of the neonatal hippocampus. The data demonstrate that presynaptic KARs in excitatory synapses to both pyramidal cells and interneurons are tonically activated by ambient glutamate and that they regulate glutamate release differentially, depending on target cell type. At synapses to pyramidal cells these tKARs inhibit glutamate release in a G-protein dependent manner but in contrast, at synapses to interneurons, tKARs facilitate glutamate release. On the network level these mechanisms act together upregulating activity of GABAergic microcircuits and promoting endogenous hippocampal network oscillations. By virtue of this, tKARs are likely to have an instrumental role in the functional development of the hippocampal circuitry. The next step was to investigate the role of GluK1 -containing receptors in the regulation of interneuron excitability. The spontaneous firing of interneurons in the CA3 stratum lucidum is markedly decreased during development. The shift involves tKARs that inhibit medium-duration afterhyperpolarization (mAHP) in these neurons during the first postnatal week. This promotes burst spiking of interneurons and thereby increases GABAergic activity in the network synergistically with the tKAR-mediated facilitation of their excitatory drive. During development the amplitude of evoked medium afterhyperpolarizing current (ImAHP) is dramatically increased due to decoupling tKAR activation and ImAHP modulation. These changes take place at the same time when the endogeneous network oscillations disappear. These tKAR-driven mechanisms in the CA3 area regulate both GABAergic and glutamatergic transmission and thus gate the feedforward excitatory drive to the area CA1. Here presynaptic tKARs to CA1 pyramidal cells suppress glutamate release and enable strong facilitation in response to high-frequency input. Therefore, CA1 synapses are finely tuned to high-frequency transmission; an activity pattern that is common in neonatal CA3-CA1 circuitry both in vivo and in vitro. The tKAR-regulated release probability acts as a novel presynaptic silencing mechanism that can be unsilenced in response to Hebbian activity. The present results shed new light on the mechanisms modulating the early network activity that paves the way for oscillations lying behind cognitive tasks such as learning and memory. Kainate receptor antagonists are already being developed for therapeutic use for instance against pain and migraine. Because of these modulatory actions, tKARs also represent an attractive candidate for therapeutic treatment of developmentally related complications such as learning disabilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A specific membrane receptor for plasma retinol-binding protein has been demonstrated in testicular cells. Prealbumin-2 did not show any specific binding to the membrane. The affinity of retinol-binding protein for receptor drastically decreases upon delivery of retinol and the retinol-binding protein does not enter the cell. The mechanism of delivery of retinol to the target cell by plasma retinol-binding protein has been investigated. The process involves two steps: direct binding of retinol-binding protein to the receptor and uptake of retinol by the target cell with a concomitant drastic reduction in the affinity of the retinol-binding protein to the receptor. Probably the second step of the process needs a cytosolic factor, possibly the cellular retinol-binding protein or an enzyme.The binding of retinol-binding protein to the receptor is saturable and reverible. The interaction shows a Kd value of 2.1 · 10−10 M. The specific binding of a retinol-binding protein with great affinity has been employed in the development of a method for radioassay of the receptor. The receptor level of the gonadal cell has been found to vary with the stage of differentiation. The receptor concentrations in 11-week-old birds and adult birds are comparable. Testoterone treatment of 11-week-old birds produced a substantial increase in the receptor concentration over control, while the protein content increased marginally, indicating that, probably, synthesis of the receptor is specifically induced by testoterone during spermatogenesis, and the concentration of receptor is relatively higher before the formation of the acrosome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ability of the beta-subunit of human chorionic gonadotropin to inhibit the response to lutropin (luteinizing hormone, LH) was tested in the immature rat ovarian system and pregnant-mare-serum-gonadotropin-primed rat ovarian system with progesterone production being used as the response. Human chorionic gonadotropin beta-subunit was found to inhibit human and ovine lutropin-stimulated progesterone production. At a constant dose of lutropin, inhibition was dependent on the concentration of beta-subunit. When concentration of the beta-subunit was kept constant at 5.0 microgram/ml and the concentration of lutropin was varied, the inhibition was maximum at the saturating concentration of the native hormone. The alpha-subunit of the human chorionic gonadotropin did not inhibit the response to lutropin. The lutropin/beta-subunit ratio required to produce an inhibition of response was much lower than that required to bring about an observable inhibition of binding.