928 resultados para Ray Hooks


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent developments in the theory of plasma-based collisionally excited x-ray lasers (XRL) have shown an optimization potential based on the dependence of the absorption region of the pumping laser on its angle of incidence on the plasma. For the experimental proof of this idea, a number of diagnostic schemes were developed, tested, qualified and applied. A high-resolution imaging system, yielding the keV emission profile perpendicular to the target surface, provided positions of the hottest plasma regions, interesting for the benchmarking of plasma simulation codes. The implementation of a highly efficient spectrometer for the plasma emission made it possible to gain information about the abundance of the ionization states necessary for the laser action in the plasma. The intensity distribution and deflection angle of the pump laser beam could be imaged for single XRL shots, giving access to its refraction process within the plasma. During a European collaboration campaign at the Lund Laser Center, Sweden, the optimization of the pumping laser incidence angle resulted in a reduction of the required pumping energy for a Ni-like Mo XRL, which enabled the operation at a repetition rate of 10 Hz. Using the experiences gained there, the XRL performance at the PHELIX facility, GSI Darmstadt with respect to achievable repetition rate and at wavelengths below 20 nm was significantly improved, and also important information for the development towards multi-100 eV plasma XRLs was acquired. Due to the setup improvements achieved during the work for this thesis, the PHELIX XRL system now has reached a degree of reproducibility and versatility which is sufficient for demanding applications like the XRL spectroscopy of heavy ions. In addition, a European research campaign, aiming towards plasma XRLs approaching the water-window (wavelengths below 5 nm) was initiated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eine zielgerichtete Steuerung und Durchführung von organischen Festkörperreaktionen wird unter anderem durch genaue Kenntnis von Packungseffekten ermöglicht. Im Rahmen dieser Arbeit konnte durch den kombinierten Einsatz von Einkristallröntgenanalyse und hochauf-lösender Festkörper-NMR an ausgewählten Beispielen ein tieferes Verständnis und Einblicke in die Reaktionsmechanismen von organischen Festkörperreaktionen auf molekularer Ebene gewonnen werden. So konnten bei der topotaktischen [2+2] Photodimerisierung von Zimt-säure Intermediate isoliert und strukturell charakterisiert werden. Insbesondere anhand statischer Deuteronen- und 13C-CPMAS NMR Spektren konnten eindeutig dynamische Wasserstoffbrücken nachgewiesen werden, die transient die Zentrosymmetrie des Reaktions-produkts aufheben. Ein weiterer Nachweis gelang daraufhin mittels Hochtemperatur-Röntgen-untersuchung, sodass der scheinbare Widerspruch von NMR- und Röntgenuntersuchungen gelöst werden konnte. Eine Veresterung der Zimtsäure entfernt diese Wasserstoffbrücken und erhält somit die Zentrosymmetrie des Photodimers. Weiterhin werden Ansätze zur Strukturkontrolle in Festkörpern basierend auf der molekularen Erkennung des Hydroxyl-Pyridin (OH-N) Heterosynthon in Co-Kristallen beschrieben, wobei vor allem die Stabilität des Synthons in Gegenwart funktioneller Gruppen mit Möglichkeit zu kompetetiver Wasserstoffbrückenbildung festgestellt wurde. Durch Erweiterung dieses Ansatzes wurde die molekulare Spezifität des Hydroxyl-Pyridin (OH-N) Heterosynthons bei gleichzeitiger Co-Kristallisation mit mehreren Komponenten erfolgreich aufgezeigt. Am Beispiel der Co-Kristallisation von trans--1,2-bis(4-pyridyl)ethylen (bpe) mit Resorcinol (res) in Gegenwart von trans-1,2-bis(4-pyridyl)ethan (bpet) konnten Zwischenprodukte der Fest-körperreaktionen und neuartige Polymorphe isoliert werden, wobei eine lückenlose Aufklärung des Reaktionswegs mittels Röntgenanalyse gelang. Dabei zeigte sich, dass das Templat Resorcinol aus den Zielverbindungen entfernbar ist. Ferner gelang die Durchführung einer seltenen, nicht-idealen Einkristall-Einkristall-Umlagerung von trans--1,2-bis(4-pyridyl)ethylen (bpe) mit Resorcinol (res). In allen Fällen konnten die Fragen zur Struktur und Dynamik der untersuchten Verbindungen nur durch gemeinsame Nutzung von Röntgenanalyse und NMR-Spektroskopie bei vergleichbaren Temperaturen eindeutig und umfassend geklärt werden.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis work is focused on the use of selected core-level x-ray spectroscopies to study semiconductor materials of great technological interest and on the development of a new implementation of appearance potential spectroscopy. Core-level spectroscopies can be exploited to study these materials with a local approach since they are sensitive to the electronic structure localized on a chemical species present in the sample examined. This approach, in fact, provides important micro-structural information that is difficult to obtain with techniques sensitive to the average properties of materials. In this thesis work we present a novel approach to the study of semiconductors with core-level spectroscopies based on an original analysis procedure that leads to an insightful understanding of the correlation between the local micro-structure and the spectral features observed. In particular, we studied the micro-structure of Hydrogen induced defects in nitride semiconductors, since the analysed materials show substantial variations of optical and electronic properties as a consequence of H incorporation. Finally, we present a novel implementation of soft x-ray appearance potential spectroscopy, a core-level spectroscopy that uses electrons as a source of excitation and has the great advantage of being an in-house technique. The original set-up illustrated was designed to reach a high signal-to-noise ratio for the acquisition of good quality spectra that can then be analyzed in the framework of the real space full multiple scattering theory. This technique has never been coupled with this analysis approach and therefore our work unite a novel implementation with an original data analysis method, enlarging the field of application of this technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Li-rich layered transition metal oxides (LLOs) Li2MnO3-LiMO2 (M=Mn, Co, Ni, etc.) have drawn considerable attention as cathode materials for rechargeable lithium batteries. They generate large reversible capacities but the fundamental reaction mechanism and structural perturbations during cycling remain controversial. In the present thesis, ex situ X-ray absorption spectroscopy (XAS) measurements were performed on Li[Li0.2Mn0.56Ni0.16Co0.08]O2 at different stage of charge during electrochemical oxidation/reduction. K-edge spectra of Co, Mn and Ni were recorded through a voltage range of 3.7-4.8V vs. Li/Li+, which consist of X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS). Oxidation states during initial charge were discussed based on values from literature as well as XANES analysis. Information about bond distance, coordination number as well as corresponding Debye-Waller factor were extracted from Gnxas analysis of raw data in the EXAFS region. The possibility of oxygen participation in the initial charge was discussed. Co and Ni prove to take part in the oxidation/reduction process while Mn remain in the tetravalent state. The cathode material appears to retain good structural short-range order during charge-discharge. A resemblance of the pristine sample and sample 4 was discovered which was firstly reported for similar compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-ray absorption spectroscopy (XAS) is a powerful means of investigation of structural and electronic properties in condensed -matter physics. Analysis of the near edge part of the XAS spectrum, the so – called X-ray Absorption Near Edge Structure (XANES), can typically provide the following information on the photoexcited atom: - Oxidation state and coordination environment. - Speciation of transition metal compounds. - Conduction band DOS projected on the excited atomic species (PDOS). Analysis of XANES spectra is greatly aided by simulations; in the most common scheme the multiple scattering framework is used with the muffin tin approximation for the scattering potential and the spectral simulation is based on a hypothetical, reference structure. This approach has the advantage of requiring relatively little computing power but in many cases the assumed structure is quite different from the actual system measured and the muffin tin approximation is not adequate for low symmetry structures or highly directional bonds. It is therefore very interesting and justified to develop alternative methods. In one approach, the spectral simulation is based on atomic coordinates obtained from a DFT (Density Functional Theory) optimized structure. In another approach, which is the object of this thesis, the XANES spectrum is calculated directly based on an ab – initio DFT calculation of the atomic and electronic structure. This method takes full advantage of the real many-electron final wavefunction that can be computed with DFT algorithms that include a core-hole in the absorbing atom to compute the final cross section. To calculate the many-electron final wavefunction the Projector Augmented Wave method (PAW) is used. In this scheme, the absorption cross section is written in function of several contributions as the many-electrons function of the finale state; it is calculated starting from pseudo-wavefunction and performing a reconstruction of the real-wavefunction by using a transform operator which contains some parameters, called partial waves and projector waves. The aim of my thesis is to apply and test the PAW methodology to the calculation of the XANES cross section. I have focused on iron and silicon structures and on some biological molecules target (myoglobin and cytochrome c). Finally other inorganic and biological systems could be taken into account for future applications of this methodology, which could become an important improvement with respect to the multiscattering approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Il trattato sottolinea quanto sia indispensabile avere un confronto fra le simulazioni numeriche effettuate col metodo Ray Tracing e le campagne di misure sperimentali. Sebbene le simulazioni numeriche comportino un impiego di tempo e risorse oneroso, una volta impostate risultano molto versatili e rapide nell'apportare cambiamenti ai relativi settaggi e ambiente di propagazione.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study deal with the population structure and connectivity of the Mediterranean endemic starry ray Raja asterias (Delaroche, 1809) in the Western and Eastern Mediterranean basin. A panel of eight microsatellite loci which cross-amplify in Rajidae (El Nagar, 2010) was used to assess population connectivity and structure. Those aims were investigated by analyzing the genetic variation of 9 population sample for a total of 185 individuals collected during past scientific surveys (MEDITS, GRUND), commercial trawling and also directly at fish markets. The purpose of this thesis is to estimate the genetic divergence occurring between the Mediterranean populations and, in particular, to assess the presence of any barrier (geographic, hydrogeological and biological) to gene flow for this species. Different statistical approaches were performed to reach this aim evaluating both the genetic diversity (nucleotide diversity, allelic richness, observed and expected heterozygosity and Hardy-Weinberg equilibrium test) and the population differentiation patterns (pairwise Fst estimated and population structure analysis). The results obtained from the analysis of the microsatellite dataset suggest a geographic and genetic separation between the starry ray populations of the Mediterranean basin into three or four distinct groups: Western and Eastern Mediterranean basins and Sicilian coast always clustering as an independent group and Algeria which could be or not considered another separate group. The data were discussed from both an evolutionary and a conservation point of view and in relation to previous results obtained by the analysis of mitochondrial marker. A comparison with other Mediterranean demersal skate species was performed in order to better contextualise our results. Finally, our results could offer useful information to protect vulnerable species as R. asterias and developing effective conservation plans in the Mediterranean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within this thesis a new double laser pulse pumping scheme for plasma-based, transient collisionally excited soft x-ray lasers (SXRL) was developed, characterized and utilized for applications. SXRL operations from ~50 up to ~200 electron volt were demonstrated applying this concept. As a central technical tool, a special Mach-Zehnder interferometer in the chirped pulse amplification (CPA) laser front-end was developed for the generation of fully controllable double-pulses to optimally pump SXRLs.rnThis Mach-Zehnder device is fully controllable and enables the creation of two CPA pulses of different pulse duration and variable energy balance with an adjustable time delay. Besides the SXRL pumping, the double-pulse configuration was applied to determine the B-integral in the CPA laser system by amplifying short pulse replica in the system, followed by an analysis in the time domain. The measurement of B-integral values in the 0.1 to 1.5 radian range, only limited by the reachable laser parameters, proved to be a promising tool to characterize nonlinear effects in the CPA laser systems.rnContributing to the issue of SXRL pumping, the double-pulse was configured to optimally produce the gain medium of the SXRL amplification. The focusing geometry of the two collinear pulses under the same grazing incidence angle on the target, significantly improved the generation of the active plasma medium. On one hand the effect was induced by the intrinsically guaranteed exact overlap of the two pulses on the target, and on the other hand by the grazing incidence pre-pulse plasma generation, which allows for a SXRL operation at higher electron densities, enabling higher gain in longer wavelength SXRLs and higher efficiency at shorter wavelength SXRLs. The observation of gain enhancement was confirmed by plasma hydrodynamic simulations.rnThe first introduction of double short-pulse single-beam grazing incidence pumping for SXRL pumping below 20 nanometer at the laser facility PHELIX in Darmstadt (Germany), resulted in a reliable operation of a nickel-like palladium SXRL at 14.7 nanometer with a pump energy threshold strongly reduced to less than 500 millijoule. With the adaptation of the concept, namely double-pulse single-beam grazing incidence pumping (DGRIP) and the transfer of this technology to the laser facility LASERIX in Palaiseau (France), improved efficiency and stability of table-top high-repetition soft x-ray lasers in the wavelength region below 20 nanometer was demonstrated. With a total pump laser energy below 1 joule the target, 2 mircojoule of nickel-like molybdenum soft x-ray laser emission at 18.9 nanometer was obtained at 10 hertz repetition rate, proving the attractiveness for high average power operation. An easy and rapid alignment procedure fulfilled the requirements for a sophisticated installation, and the highly stable output satisfied the need for a reliable strong SXRL source. The qualities of the DGRIP scheme were confirmed in an irradiation operation on user samples with over 50.000 shots corresponding to a deposited energy of ~ 50 millijoule.rnThe generation of double-pulses with high energies up to ~120 joule enabled the transfer to shorter wavelength SXRL operation at the laser facility PHELIX. The application of DGRIP proved to be a simple and efficient method for the generation of soft x-ray lasers below 10 nanometer. Nickel-like samarium soft x-ray lasing at 7.3 nanometer was achieved at a low total pump energy threshold of 36 joule, which confirmed the suitability of the applied pumping scheme. A reliable and stable SXRL operation was demonstrated, due to the single-beam pumping geometry despite the large optical apertures. The soft x-ray lasing of nickel-like samarium was an important milestone for the feasibility of applying the pumping scheme also for higher pumping pulse energies, which are necessary to obtain soft x-ray laser wavelengths in the water window. The reduction of the total pump energy below 40 joule for 7.3 nanometer short wavelength lasing now fulfilled the requirement for the installation at the high-repetition rate operation laser facility LASERIX.rn

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis work concerns X-ray spectrometry for both medical and space applications and is divided into two sections. The first section addresses an X-ray spectrometric system designed to study radiological beams and is devoted to the optimization of diagnostic procedures in medicine. A parametric semi-empirical model capable of efficiently reconstructing diagnostic X-ray spectra in 'middle power' computers was developed and tested. In addition, different silicon diode detectors were tested as real-time detectors in order to provide a real-time evaluation of the spectrum during diagnostic procedures. This project contributes to the field by presenting an improved simulation of a realistic X-ray beam emerging from a common X-ray tube with a complete and detailed spectrum that lends itself to further studies of added filtration, thus providing an optimized beam for different diagnostic applications in medicine. The second section describes the preliminary tests that have been carried out on the first version of an Application Specific Integrated Circuit (ASIC), integrated with large area position-sensitive Silicon Drift Detector (SDD) to be used on board future space missions. This technology has been developed for the ESA project: LOFT (Large Observatory for X-ray Timing), a new medium-class space mission that the European Space Agency has been assessing since February of 2011. The LOFT project was proposed as part of the Cosmic Vision Program (2015-2025).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural stones have been widely used in the construction field since antiquity. Building materials undergo decay processes due to mechanical,chemical, physical and biological causes that can act together. Therefore an interdisciplinary approach is required in order to understand the interaction between the stone and the surrounding environment. Utilization of buildings, inadequate restoration activities and in general anthropogenic weathering factors may contribute to this degradation process. For this reasons, in the last few decades new technologies and techniques have been developed and introduced in the restoration field. Consolidants are largely used in restoration and conservation of cultural heritage in order to improve the internal cohesion and to reduce the weathering rate of building materials. It is important to define the penetration depth of a consolidant for determining its efficacy. Impregnation mainly depends on the microstructure of the stone (i.e. porosity) and on the properties of the product itself. Throughout this study, tetraethoxysilane (TEOS) applied on globigerina limestone samples has been chosen as object of investigation. After hydrolysis and condensation, TEOS deposits silica gel inside the pores, improving the cohesion of the grains. X-ray computed tomography has been used to characterize the internal structure of the limestone samples,treated and untreated with a TEOS-based consolidant. The aim of this work is to investigate the penetration depth and the distribution of the TEOS inside the porosity, using both traditional approaches and advanced X-ray tomographic techniques, the latter allowing the internal visualization in three dimensions of the materials. Fluid transport properties and porosity have been studied both at macroscopic scale, by means of capillary uptake tests and radiography, and at microscopic scale,investigated with X-ray Tomographic Microscopy (XTM). This allows identifying changes in the porosity, by comparison of the images before and after the treatment, and locating the consolidant inside the stone. Tests were initially run at University of Bologna, where characterization of the stone was carried out. Then the research continued in Switzerland: X-ray tomography and radiography were performed at Empa, Swiss Federal Laboratories for Materials Science and Technology, while XTM measurements with synchrotron radiation were run at Paul Scherrer Institute in Villigen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, I have investigated the evolution of the high-redshift (z > 3) AGN population by collecting data from some of the major Chandra and XMM-Newton surveys. The final sample (141 sources) is one of the largest selected at z> 3 in the X- rays and it is characterised by a very high redshift completeness (98%). I derived the spectral slopes and obscurations through a spectral anaysis and I assessed the high-z evolution by deriving the luminosity function and the number counts of the sample. The best representation of the AGN evolution is a pure density evolution (PDE) model: the AGN space density is found to decrease by a factor of 10 from z=3 to z=5. I also found that about 50% of AGN are obscured by large column densities (logNH > 23). By comparing these data with those in the Local Universe, I found a positive evolution of the obscured AGN fraction with redshift, especially for luminous (logLx > 44) AGN. I also studied the gas content of z < 1 AGN-hosting galaxies and compared it with that of inactive galaxies. For the first time, I applied to AGN a method to derive the gas mass previously used for inactive galaxies only. AGN are found to live preferentially in gas-rich galaxies. This result on the one hand can help us in understanding the AGN triggering mechanisms, on the other hand explains why AGN are preferentially hosted by star-forming galaxies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Al fine di migliorare le tecniche di coltura cellulare in vitro, sistemi a bioreattore sono sempre maggiormente utilizzati, e.g. ingegnerizzazione del tessuto osseo. Spinner Flasks, bioreattori rotanti e sistemi a perfusione di flusso sono oggi utilizzati e ogni sistema ha vantaggi e svantaggi. Questo lavoro descrive lo sviluppo di un semplice bioreattore a perfusione ed i risultati della metodologia di valutazione impiegata, basata su analisi μCT a raggi-X e tecniche di modellizzazione 3D. Un semplice bioreattore con generatore di flusso ad elica è stato progettato e costruito con l'obiettivo di migliorare la differenziazione di cellule staminali mesenchimali, provenienti da embrioni umani (HES-MP); le cellule sono state seminate su scaffold porosi di titanio che garantiscono una migliore adesione della matrice mineralizzata. Attraverso un microcontrollore e un'interfaccia grafica, il bioreattore genera tre tipi di flusso: in avanti (senso orario), indietro (senso antiorario) e una modalità a impulsi (avanti e indietro). Un semplice modello è stato realizzato per stimare la pressione generata dal flusso negli scaffolds (3•10-2 Pa). Sono stati comparati tre scaffolds in coltura statica e tre all’interno del bioreattore. Questi sono stati incubati per 21 giorni, fissati in paraformaldehyde (4% w/v) e sono stati soggetti ad acquisizione attraverso μCT a raggi-X. Le immagini ottenute sono state poi elaborate mediante un software di imaging 3D; è stato effettuato un sezionamento “virtuale” degli scaffolds, al fine di ottenere la distribuzione del gradiente dei valori di grigio di campioni estratti dalla superficie e dall’interno di essi. Tale distribuzione serve per distinguere le varie componenti presenti nelle immagini; in questo caso gli scaffolds dall’ipotetica matrice cellulare. I risultati mostrano che sia sulla superficie che internamente agli scaffolds, mantenuti nel bioreattore, è presente una maggiore densità dei gradienti dei valori di grigio ciò suggerisce un migliore deposito della matrice mineralizzata. Gli insegnamenti provenienti dalla realizzazione di questo bioreattore saranno utilizzati per progettare una nuova versione che renderà possibile l’analisi di più di 20 scaffolds contemporaneamente, permettendo un’ulteriore analisi della qualità della differenziazione usando metodologie molecolari ed istochimiche.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-ray photoemission spectroscopy (XPS) is one of the most universal and powerful tools for investigation of chemical states and electronic structures of materials. The application of hard x-rays increases the inelastic mean free path of the emitted electrons within the solid and thus makes hard x-ray photoelectron spectroscopy (HAXPES) a bulk sensitive probe for solid state research and especially a very effective nondestructive technique to study buried layers.rnThis thesis focuses on the investigation of multilayer structures, used in magnetic tunnel junctions (MTJs), by a number of techniques applying HAXPES. MTJs are the most important components of novel nanoscale devices employed in spintronics. rnThe investigation and deep understanding of the mechanisms responsible for the high performance of such devices and properties of employed magnetic materials that are, in turn, defined by their electronic structure becomes feasible applying HAXPES. Thus the process of B diffusion in CoFeB-based MTJs was investigated with respect to the annealing temperature and its influence on the changes in the electronic structure of CoFeB electrodes that clarify the behaviour and huge TMR ratio values obtained in such devices. These results are presented in chapter 6. The results of investigation of the changes in the valence states of buried off-stoichiometric Co2MnSi electrodes were investigated with respect to the Mn content α and its influence on the observed TMR ratio are described in chapter 7.rnrnMagnetoelectronic properties such as exchange splitting in ferromagnetic materials as well as the macroscopic magnetic ordering can be studied by magnetic circular dichroism in photoemission (MCDAD). It is characterized by the appearance of an asymmetry in the photoemission spectra taken either from the magnetized sample with the reversal of the photon helicity or by reversal of magnetization direction of the sample when the photon helicity direction is fixed. Though recently it has been widely applied for the characterization of surfaces using low energy photons, the bulk properties have stayed inaccessible. Therefore in this work this method was integrated to HAXPES to provide an access to exploration of magnetic phenomena in the buried layers of the complex multilayer structures. Chapter 8 contains the results of the MCDAD measurements employing hard x-rays for exploration of magnetic properties of the common CoFe-based band-ferromagnets as well as half-metallic ferromagnet Co2FeAl-based MTJs.rnrnInasmuch as the magnetoresistive characteristics in spintronic devices are fully defined by the electron spins of ferromagnetic materials their direct measurements always attracted much attention but up to date have been limited by the surface sensitivity of the developed techniques. Chapter 9 presents the results on the successfully performed spin-resolved HAXPES experiment using a spin polarimeter of the SPLEED-type on a buried Co2FeAl0.5Si0.5 magnetic layer. The measurements prove that a spin polarization of about 50 % is retained during the transmission of the photoelectrons emitted from the Fe 2p3/2 state through a 3-nm-thick oxide capping layer.rn

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for automatic scaling of oblique ionograms has been introduced. This method also provides a rejection procedure for ionograms that are considered to lack sufficient information, depicting a very good success rate. Observing the Kp index of each autoscaled ionogram, can be noticed that the behavior of the autoscaling program does not depend on geomagnetic conditions. The comparison between the values of the MUF provided by the presented software and those obtained by an experienced operator indicate that the procedure developed for detecting the nose of oblique ionogram traces is sufficiently efficient and becomes much more efficient as the quality of the ionograms improves. These results demonstrate the program allows the real-time evaluation of MUF values associated with a particular radio link through an oblique radio sounding. The automatic recognition of a part of the trace allows determine for certain frequencies, the time taken by the radio wave to travel the path between the transmitter and receiver. The reconstruction of the ionogram traces, suggests the possibility of estimating the electron density between the transmitter and the receiver, from an oblique ionogram. The showed results have been obtained with a ray-tracing procedure based on the integration of the eikonal equation and using an analytical ionospheric model with free parameters. This indicates the possibility of applying an adaptive model and a ray-tracing algorithm to estimate the electron density in the ionosphere between the transmitter and the receiver An additional study has been conducted on a high quality ionospheric soundings data set and another algorithm has been designed for the conversion of an oblique ionogram into a vertical one, using Martyn's theorem. This allows a further analysis of oblique soundings, throw the use of the INGV Autoscala program for the automatic scaling of vertical ionograms.