892 resultados para Random Pulse Width Modulation, Random Band Hysteresis Current Control, AC Motor Drives


Relevância:

50.00% 50.00%

Publicador:

Resumo:

A fully 3-D atomistic quantum mechanical simulation is presented to study the random dopant-induced effects in nanometer metal-oxide-semiconductor field-effect transistors. The empirical pseudopotential is used to represent the single particle Hamiltonian, and the linear combination of bulk band method is used to solve the million atom Schrodinger equation. The gate threshold fluctuation and lowering due to the discrete dopant configurations are studied. It is found that quantum mechanical effects increase the threshold fluctuation while decreasing the threshold lowering. The increase of threshold fluctuation is in agreement with the researchers' early study based on an approximated density gradient approach. However, the decrease in threshold lowering is in contrast with the density gradient calculations.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper proposes an ultra-low power CMOS random number generator (RING), which is based on an oscillator-sampling architecture. The noisy oscillator consists of a dual-drain MOS transistor, a noise generator and a voltage control oscillator. The dual-drain MOS transistor can bring extra-noise to the drain current or the output voltage so that the jitter of the oscillator is much larger than the normal oscillator. The frequency division ratio of the high-frequency sampling oscillator and the noisy oscillator is small. The RNG has been fabricated in a 0.35 mu m CMOS process. It can produce good quality bit streams without any post-processing. The bit rate of this RNG could be as high as 100 kbps. It has a typical ultra-low power dissipation of 0.91 mu W. This novel circuit is a promising unit for low power system and communication applications. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper presents a direct digital frequency synthesizer (DDFS) with a 16-bit accumulator, a fourth-order phase domain single-stage Delta Sigma interpolator, and a 300-MS/s 12-bit current-steering DAC based on the Q(2) Random Walk switching scheme. The Delta Sigma interpolator is used to reduce the phase truncation error and the ROM size. The implemented fourth-order single-stage Delta Sigma noise shaper reduces the effective phase bits by four and reduces the ROM size by 16 times. The DDFS prototype is fabricated in a 0.35-mu m CMOS technology with active area of 1.11 mm(2) including a 12-bit DAC. The measured DDFS spurious-free dynamic range (SFDR) is greater than 78 dB using a reduced ROM with 8-bit phase, 12-bit amplitude resolution and a size of 0.09 mm(2). The total power consumption of the DDFS is 200)mW with a 3.3-V power supply.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Random multimode lasers are achieved in 4-(dicyanomethylene)-2-tert-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) doped polystyrene thin films by introducing silicon dioxide (SiO2) nanoparticles as scatterers. The devices emit a resonance multimode peak at a center wavelength of 640 nm with a mode linewidth less than 0.87 nm. The threshold excitation intensity is as low as 0.25 mJ pulse(-1) cm(-2). It can be seen that the microscopic random resonance cavities can be formed by multiple scattering of SiO2 nanoparticles.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The authors report a random lasing emission from 4-(dicy-anomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran doped polystyrene thin films by introducing polystyrene nanoparticles. The aspects of concentration and diameter of polystyrene nanoparticles have been intensively investigated and found that the lasing occurs due to the scattering role of polystyrene nanoparticles. The devices emit a resonance multimode peak centered at a wavelength of 630 nm with a mode linewidth of less than 0.35 nm and exhibit threshold excitation intensity of as low as 0.06 mJ pulse(-1) cm(-2). The microscopic laser cavities formed by multiple scattering have been captured. The demonstration of random laser opens up the possibility of using organic scattering as alternative sources of coherent light emission.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Compatibilization of blends of Linear low-density polyethylene (LLDPE)-poly(methyl methacrylate) (PMMA) and LLDPE-copolymer of methyl methacrylate (MMA) and 4-vinylpyridine (poly(MMA-co-4VP) with poly(ethylene-co-methacrylic acid) (EMAA) have been studied. Mechanical properties of the LLDPE-PMMA blends increase upon addition of EMAA. In order to further improve interfacial adhesion of LLDPE and PMMA, 4-vinyl pyridine units are introduced into PMMA chains, or poly(MMA-co-4VP) is used as the polar polymer. In LLDPE-poly(MMA-co-4VP)-EMAA blends, interaction of MAA in EMAA with 4VP of poly(MMA-co-4VP) causes a band shift in the infrared (IR) spectra. Chemical shifts of N-1s binding energy in X-ray photoelectronic spectroscopy (XPS) experiments indicate a transfer of proton from MAA to 4VP. Scanning electron microscopy (SEM) pictures show that the morphology of the blends were improved upon addition of EMAA. Nonradiative energy transfer (NRET) fluorescence results attest that there exists interdiffusion of chromophore-labeled LLDPE chains and chromophore-labeled poly(MMA-co-4VP) chains in the interface. Based on experimental results, the mechanism of compatibilization is studied in detail. Compatibilization is realized through the interaction between MAA in EMAA with 4VP in poly(MMA-co-4VP). (C) 1999 John Wiley & Sons, Inc.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Ring-banded spherulites in crystallization of poly(epsilon-caprolactone) and poly (styrene-random-acrylonitrile) blends were observed with polarizing optical microscopy and digital image analysis technique was applied directly to the image obtained by polarizing microscope, Several new interesting phenomena were found. One is that the ring-banded structure is still clearly seen after the analyzer was removed and this astonished phenomenon couldn't result from the general concept about formation mechanism of ring-banded spherulite - lamellae twisting, Another one is that there is a slight, dark line in the bright band when cross polars were added, which may be related to the formation process and mechanism of ring-banded spherulites in the blends of poly (epsilon-caprolactone) and poly (styrene-random-acrylonitrile).

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Because of the intrinsic difficulty in determining distributions for wave periods, previous studies on wave period distribution models have not taken nonlinearity into account and have not performed well in terms of describing and statistically analyzing the probability density distribution of ocean waves. In this study, a statistical model of random waves is developed using Stokes wave theory of water wave dynamics. In addition, a new nonlinear probability distribution function for the wave period is presented with the parameters of spectral density width and nonlinear wave steepness, which is more reasonable as a physical mechanism. The magnitude of wave steepness determines the intensity of the nonlinear effect, while the spectral width only changes the energy distribution. The wave steepness is found to be an important parameter in terms of not only dynamics but also statistics. The value of wave steepness reflects the degree that the wave period distribution skews from the Cauchy distribution, and it also describes the variation in the distribution function, which resembles that of the wave surface elevation distribution and wave height distribution. We found that the distribution curves skew leftward and upward as the wave steepness increases. The wave period observations for the SZFII-1 buoy, made off the coast of Weihai (37A degrees 27.6' N, 122A degrees 15.1' E), China, are used to verify the new distribution. The coefficient of the correlation between the new distribution and the buoy data at different spectral widths (nu=0.3-0.5) is within the range of 0.968 6 to 0.991 7. In addition, the Longuet-Higgins (1975) and Sun (1988) distributions and the new distribution presented in this work are compared. The validations and comparisons indicate that the new nonlinear probability density distribution fits the buoy measurements better than the Longuet-Higgins and Sun distributions do. We believe that adoption of the new wave period distribution would improve traditional statistical wave theory.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In the present research, the study of Song (2004) for random interfacial waves in two-layer fluid is extended to the case of fluids moving at different steady uniform speeds. The equations describing the random displacements of the density interface and the associated velocity potentials in two-layer fluid are solved to the second order, and the wave-wave interactions of the wave components and the interactions between the waves and currents are described. As expected, the extended solutions include those obtained by Song (2004) as one special case where the steady uniform currents of the two fluids are taken as zero, and the solutions reduce to those derived by Sharma and Dean (1979) for random surface waves if the density of the upper fluid and the current of the lower fluid are both taken as zero.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We study the generation of supercontinua in air-silica microstructured fibers by both nanosecond and femtosecond pulse excitation. In the nanosecond experiments, a 300-nm broadband visible continuum was generated in a 1.8-m length of fiber pumped at 532 nm by 0.8-ns pulses from a frequency-doubled passively Q-switched Nd:YAG microchip laser. At this wavelength, the dominant mode excited under the conditions of continuum generation is the LP 11 mode, and, with nanosecond pumping, self-phase modulation is negligible and the continuum generation is dominated by the interplay of Raman and parametric effects. The spectral extent of the continuum is well explained by calculations of the parametric gain curves for four-wave mixing about the zero-dispersion wavelength of the LP11 mode. In the femtosecond experiments, an 800-nm broad-band visible and near-infrared continuum has been generated in a 1-m length of fiber pumped at 780 nm by 100-fs pulses from a Kerr-lens model-locked Ti:sapphire laser. At this wavelength, excitation and continuum generation occur in the LP01 mode, and the spectral width of the observed continuum is shown to be consistent with the phase-matching bandwidth for parametric processes calculated for this fiber mode. In addition, numerical simulations based on an extended nonlinear Schrödinger equation were used to model supercontinuum generation in the femtosecond regime, with the simulation results reproducing the major features of the experimentally observed spectrum. © 2002 Optical Society of America.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We report on the successful fabrication of arrays of switchable nanocapacitors made by harnessing the self-assembly of materials. The structures are composed of arrays of 20-40 nm diameter Pt nanowires, spaced 50-100 nm apart, electrodeposited through nanoporous alumina onto a thin film lower electrode on a silicon wafer. A thin film ferroelectric (both barium titanate (BTO) and lead zirconium titanate (PZT)) has been deposited on top of the nanowire array, followed by the deposition of thin film upper electrodes. The PZT nanocapacitors exhibit hysteresis loops with substantial remnant polarizations, while although the switching performance was inferior, the low-field characteristics of the BTO nanocapacitors show dielectric behavior comparable to conventional thin film heterostructures. While registration is not sufficient for commercial RAM production, this is nevertheless an embryonic form of the highest density hard-wired FRAM capacitor array reported to date and compares favorably with atomic force microscopy read-write densities.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The comet assay is a technique used to quantify DNA damage and repair at a cellular level. In the assay, cells are embedded in agarose and the cellular content is stripped away leaving only the DNA trapped in an agarose cavity which can then be electrophoresed. The damaged DNA can enter the agarose and migrate while the undamaged DNA cannot and is retained. DNA damage is measured as the proportion of the migratory ‘tail’ DNA compared to the total DNA in the cell. The fundamental basis of these arbitrary values is obtained in the comet acquisition phase using fluorescence microscopy with a stoichiometric stain in tandem with image analysis software. Current methods deployed in such an acquisition are expected to be both objectively and randomly obtained. In this paper we examine the ‘randomness’ of the acquisition phase and suggest an alternative method that offers both objective and unbiased comet selection. In order to achieve this, we have adopted a survey sampling approach widely used in stereology, which offers a method of systematic random sampling (SRS). This is desirable as it offers an impartial and reproducible method of comet analysis that can be used both manually or automated. By making use of an unbiased sampling frame and using microscope verniers, we are able to increase the precision of estimates of DNA damage. Results obtained from a multiple-user pooled variation experiment showed that the SRS technique attained a lower variability than that of the traditional approach. The analysis of a single user with repetition experiment showed greater individual variances while not being detrimental to overall averages. This would suggest that the SRS method offers a better reflection of DNA damage for a given slide and also offers better user reproducibility.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Many studies have shown that with increasing LET of ionizing radiation the RBE (relative biological effectiveness) for dsb (double strand breaks) induction remains around 1.0 despite the increase in the RBE for cell killing. This has been attributed to an increase in the complexity of lesions, classified as dsb with current techniques, at multiply damaged sites. This study determines the molecular weight distributions of DNA from Chinese hamster V79 cells irradiated with X-rays or 110 keV/mu m alpha-particles. Two running conditions for pulsed-field gel-electrophoresis were chosen to give optimal separation of fragments either in the 225 kbp-5.7 Mbp range or the 0.3 kbp to 225 kbp range. Taking the total fraction of DNA migrating into the gel as a measure of fragmentation, the RBE for dsb induction was less than 1.0 for both molecular weight regions studied. The total yields of dsb were 8.2 x 10(-9) dsb/Gy/bp for X-rays and 7.8 x 10(-9) dsb/Gy/bp for a-particles, measured using a random breakage model. Analysis of the RBE of alpha-particles versus molecular weight gave a different response. In the 0.4 Mbp-57 Mbp region the RBE was less than 1.0; however, below 0.4 Mbp the RBE increased above 1.0. The frequency distributions of fragment sizes were found to differ from those predicted by a model assuming random breakage along the length of the DNA and the differences were greater for alpha-particles than for X-rays. An excess of fragments induced by a single-hit mechanism was found in the 8-300 kbp region and for X-rays and alpha-particles these corresponded to an extra 0.8 x 10(-9) and 3.4 x 10(-9) dsb/bp/Gy, respectively. Thus for every alpha-particle track that induces a dsb there is a 44% probability of inducing a second break within 300 kbp and for electron tracks the probability is 10%. This study shows that the distribution of damage from a high LET alpha-particle track is significantly different from that observed with low LET X-rays. In particular, it suggests that the fragmentation patterns of irradiated DNA may be related to the higher-order chromatin repealing structures found in intact cells.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Many studies have shown that the effectiveness of radiations of varying LET is similar when yields of dsb have been measured, despite large differences in biological response. Recent evidence has suggested however, that current techniques underestimate the yields of dsb. By monitoring the fragmentation of DNA over a wide range of fragment sizes ( 6 Mbp) by pulsed field electrophoresis, RBE values greater than 1.0 for radiations of around 100 keV/mm have been determined. The data provide evidence for the production of correlated breaks produced within cells as particle tracks traverse the nucleus. The highly ordered structure of DNA within mammalian cells may lead to clustering of breaks over distances related to the repeating unit structures of the chromatin. As well as these regionally damaged sites, a major contributor to radiation effectiveness will be the localised clustering of damage in the 1 - 20 bp region. A major effort is required to elucidate the relative importance of these levels of clustering and their importance in biological response.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We derive and employ a semiclassical Langevin equation obtained from path integrals to describe the ionic dynamics of a molecular junction in the presence of electrical current. The electronic environment serves as an effective nonequilibrium bath. The bath results in random forces describing Joule heating, current-induced forces including the nonconservative wind force, dissipative frictional forces, and an effective Lorentz-type force due to the Berry phase of the nonequilibrium electrons. Using a generic two-level molecular model, we highlight the importance of both current-induced forces and Joule heating for the stability of the system. We compare the impact of the different forces, and the wide-band approximation for the electronic structure on our result. We examine the current-induced instabilities (excitation of runaway "waterwheel" modes) and investigate the signature of these in the Raman signals.