933 resultados para Random Pore Model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, absolute water permeability is estimated from capillary imbibition and pore structure for 15 sedimentary rock types. They present a wide range of petrographic characteristics that provide degrees of connectivity, porosities, pore size distributions, water absorption coefficients by capillarity and water permeabilities. A statistical analysis shows strong correlations among the petrophysical parameters of the studied rocks. Several fundamental properties are fitted into different linear and multiple expressions where water permeability is expressed as a generalized function of the properties. Some practical aspects of these correlations are highlighted in order to use capillary imbibition tests to estimate permeability. The permeability–porosity relation is discussed in the context of the influence of pore connectivity and wettability. As a consequence, we propose a generalized model for permeability that includes information about water fluid rate (water absorption coefficient by capillarity), water properties (density and viscosity), wetting (interfacial tension and contact angle) and pore structure (pore radius and porosity). Its application is examined in terms of the type of pores that contribute to water transport and wettability. The results indicate that the threshold pore radius, in which water percolates through rock, achieves the best description of the pore system. The proposed equation is compared against Carman–Kozeny's and Katz–Thompson's equations. The proposed equation achieves very accurate predictions of the water permeability in the range of 0.01 to 1000 mD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By Monte Carlo simulations, we study the character of the spinglass (SG) phase in dense disordered packings of magnetic nanoparticles (NPs). We focus on NPs which have large uniaxial anisotropies and can be well represented as Ising dipoles. Dipoles are placed on SC lattices and point along randomly oriented axes. From the behaviour of a SG correlation length we determine the transition temperature Tc between the paramagnetic and a SG phase. For temperatures well below Tc we find distributions of the SG overlap parameter q that are strongly sample-dependent and exhibit several spikes. We find that the average width of spikes, and the fraction of samples with spikes higher than a certain threshold does not vary appreciably with the system sizes studied. We compare these results with the ones found previously for 3D site-diluted systems of parallel Ising dipoles and with the behaviour of the Sherrington-Kirkpatrick model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study provides a methodology that gives a predictive character the computer simulations based on detailed models of the geometry of a porous medium. We using the software FLUENT to investigate the flow of a viscous Newtonian fluid through a random fractal medium which simplifies a two-dimensional disordered porous medium representing a petroleum reservoir. This fractal model is formed by obstacles of various sizes, whose size distribution function follows a power law where exponent is defined as the fractal dimension of fractionation Dff of the model characterizing the process of fragmentation these obstacles. They are randomly disposed in a rectangular channel. The modeling process incorporates modern concepts, scaling laws, to analyze the influence of heterogeneity found in the fields of the porosity and of the permeability in such a way as to characterize the medium in terms of their fractal properties. This procedure allows numerically analyze the measurements of permeability k and the drag coefficient Cd proposed relationships, like power law, for these properties on various modeling schemes. The purpose of this research is to study the variability provided by these heterogeneities where the velocity field and other details of viscous fluid dynamics are obtained by solving numerically the continuity and Navier-Stokes equations at pore level and observe how the fractal dimension of fractionation of the model can affect their hydrodynamic properties. This study were considered two classes of models, models with constant porosity, MPC, and models with varying porosity, MPV. The results have allowed us to find numerical relationship between the permeability, drag coefficient and the fractal dimension of fractionation of the medium. Based on these numerical results we have proposed scaling relations and algebraic expressions involving the relevant parameters of the phenomenon. In this study analytical equations were determined for Dff depending on the geometrical parameters of the models. We also found a relation between the permeability and the drag coefficient which is inversely proportional to one another. As for the difference in behavior it is most striking in the classes of models MPV. That is, the fact that the porosity vary in these models is an additional factor that plays a significant role in flow analysis. Finally, the results proved satisfactory and consistent, which demonstrates the effectiveness of the referred methodology for all applications analyzed in this study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Generating sample models for testing a model transformation is no easy task. This paper explores the use of classifying terms and stratified sampling for developing richer test cases for model transformations. Classifying terms are used to define the equivalence classes that characterize the relevant subgroups for the test cases. From each equivalence class of object models, several representative models are chosen depending on the required sample size. We compare our results with test suites developed using random sampling, and conclude that by using an ordered and stratified approach the coverage and effectiveness of the test suite can be significantly improved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the presented paper, the temporal and statistical properties of a Lyot filter based multiwavelength random DFB fiber laser with a wide flat spectrum, consisting of individual lines, were investigated. It was shown that separate spectral lines forming the laser spectrum have mostly Gaussian statistics and so represent stochastic radiation, but at the same time the entire radiation is not fully stochastic. A simple model, taking into account phenomenological correlations of the lines' initial phases was established. Radiation structure in the experiment and simulation proved to be different, demanding interactions between different lines to be described via a NLSE-based model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Random Walk with Restart (RWR) is an appealing measure of proximity between nodes based on graph structures. Since real graphs are often large and subject to minor changes, it is prohibitively expensive to recompute proximities from scratch. Previous methods use LU decomposition and degree reordering heuristics, entailing O(|V|^3) time and O(|V|^2) memory to compute all (|V|^2) pairs of node proximities in a static graph. In this paper, a dynamic scheme to assess RWR proximities is proposed: (1) For unit update, we characterize the changes to all-pairs proximities as the outer product of two vectors. We notice that the multiplication of an RWR matrix and its transition matrix, unlike traditional matrix multiplications, is commutative. This can greatly reduce the computation of all-pairs proximities from O(|V|^3) to O(|delta|) time for each update without loss of accuracy, where |delta| (<<|V|^2) is the number of affected proximities. (2) To avoid O(|V|^2) memory for all pairs of outputs, we also devise efficient partitioning techniques for our dynamic model, which can compute all pairs of proximities segment-wisely within O(l|V|) memory and O(|V|/l) I/O costs, where 1<=l<=|V| is a user-controlled trade-off between memory and I/O costs. (3) For bulk updates, we also devise aggregation and hashing methods, which can discard many unnecessary updates further and handle chunks of unit updates simultaneously. Our experimental results on various datasets demonstrate that our methods can be 1–2 orders of magnitude faster than other competitors while securing scalability and exactness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Le tecniche di Machine Learning sono molto utili in quanto consento di massimizzare l’utilizzo delle informazioni in tempo reale. Il metodo Random Forests può essere annoverato tra le tecniche di Machine Learning più recenti e performanti. Sfruttando le caratteristiche e le potenzialità di questo metodo, la presente tesi di dottorato affronta due casi di studio differenti; grazie ai quali è stato possibile elaborare due differenti modelli previsionali. Il primo caso di studio si è incentrato sui principali fiumi della regione Emilia-Romagna, caratterizzati da tempi di risposta molto brevi. La scelta di questi fiumi non è stata casuale: negli ultimi anni, infatti, in detti bacini si sono verificati diversi eventi di piena, in gran parte di tipo “flash flood”. Il secondo caso di studio riguarda le sezioni principali del fiume Po, dove il tempo di propagazione dell’onda di piena è maggiore rispetto ai corsi d’acqua del primo caso di studio analizzato. Partendo da una grande quantità di dati, il primo passo è stato selezionare e definire i dati in ingresso in funzione degli obiettivi da raggiungere, per entrambi i casi studio. Per l’elaborazione del modello relativo ai fiumi dell’Emilia-Romagna, sono stati presi in considerazione esclusivamente i dati osservati; a differenza del bacino del fiume Po in cui ai dati osservati sono stati affiancati anche i dati di previsione provenienti dalla catena modellistica Mike11 NAM/HD. Sfruttando una delle principali caratteristiche del metodo Random Forests, è stata stimata una probabilità di accadimento: questo aspetto è fondamentale sia nella fase tecnica che in fase decisionale per qualsiasi attività di intervento di protezione civile. L'elaborazione dei dati e i dati sviluppati sono stati effettuati in ambiente R. Al termine della fase di validazione, gli incoraggianti risultati ottenuti hanno permesso di inserire il modello sviluppato nel primo caso studio all’interno dell’architettura operativa di FEWS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of random probability measures is a lively research topic that has attracted interest from different fields in recent years. In this thesis, we consider random probability measures in the context of Bayesian nonparametrics, where the law of a random probability measure is used as prior distribution, and in the context of distributional data analysis, where the goal is to perform inference given avsample from the law of a random probability measure. The contributions contained in this thesis can be subdivided according to three different topics: (i) the use of almost surely discrete repulsive random measures (i.e., whose support points are well separated) for Bayesian model-based clustering, (ii) the proposal of new laws for collections of random probability measures for Bayesian density estimation of partially exchangeable data subdivided into different groups, and (iii) the study of principal component analysis and regression models for probability distributions seen as elements of the 2-Wasserstein space. Specifically, for point (i) above we propose an efficient Markov chain Monte Carlo algorithm for posterior inference, which sidesteps the need of split-merge reversible jump moves typically associated with poor performance, we propose a model for clustering high-dimensional data by introducing a novel class of anisotropic determinantal point processes, and study the distributional properties of the repulsive measures, shedding light on important theoretical results which enable more principled prior elicitation and more efficient posterior simulation algorithms. For point (ii) above, we consider several models suitable for clustering homogeneous populations, inducing spatial dependence across groups of data, extracting the characteristic traits common to all the data-groups, and propose a novel vector autoregressive model to study of growth curves of Singaporean kids. Finally, for point (iii), we propose a novel class of projected statistical methods for distributional data analysis for measures on the real line and on the unit-circle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background There is a wide variation of recurrence risk of Non-small-cell lung cancer (NSCLC) within the same Tumor Node Metastasis (TNM) stage, suggesting that other parameters are involved in determining this probability. Radiomics allows extraction of quantitative information from images that can be used for clinical purposes. The primary objective of this study is to develop a radiomic prognostic model that predicts a 3 year disease free-survival (DFS) of resected Early Stage (ES) NSCLC patients. Material and Methods 56 pre-surgery non contrast Computed Tomography (CT) scans were retrieved from the PACS of our institution and anonymized. Then they were automatically segmented with an open access deep learning pipeline and reviewed by an experienced radiologist to obtain 3D masks of the NSCLC. Images and masks underwent to resampling normalization and discretization. From the masks hundreds Radiomic Features (RF) were extracted using Py-Radiomics. Hence, RF were reduced to select the most representative features. The remaining RF were used in combination with Clinical parameters to build a DFS prediction model using Leave-one-out cross-validation (LOOCV) with Random Forest. Results and Conclusion A poor agreement between the radiologist and the automatic segmentation algorithm (DICE score of 0.37) was found. Therefore, another experienced radiologist manually segmented the lesions and only stable and reproducible RF were kept. 50 RF demonstrated a high correlation with the DFS but only one was confirmed when clinicopathological covariates were added: Busyness a Neighbouring Gray Tone Difference Matrix (HR 9.610). 16 clinical variables (which comprised TNM) were used to build the LOOCV model demonstrating a higher Area Under the Curve (AUC) when RF were included in the analysis (0.67 vs 0.60) but the difference was not statistically significant (p=0,5147).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural Language Processing (NLP) has seen tremendous improvements over the last few years. Transformer architectures achieved impressive results in almost any NLP task, such as Text Classification, Machine Translation, and Language Generation. As time went by, transformers continued to improve thanks to larger corpora and bigger networks, reaching hundreds of billions of parameters. Training and deploying such large models has become prohibitively expensive, such that only big high tech companies can afford to train those models. Therefore, a lot of research has been dedicated to reducing a model’s size. In this thesis, we investigate the effects of Vocabulary Transfer and Knowledge Distillation for compressing large Language Models. The goal is to combine these two methodologies to further compress models without significant loss of performance. In particular, we designed different combination strategies and conducted a series of experiments on different vertical domains (medical, legal, news) and downstream tasks (Text Classification and Named Entity Recognition). Four different methods involving Vocabulary Transfer (VIPI) with and without a Masked Language Modelling (MLM) step and with and without Knowledge Distillation are compared against a baseline that assigns random vectors to new elements of the vocabulary. Results indicate that VIPI effectively transfers information of the original vocabulary and that MLM is beneficial. It is also noted that both vocabulary transfer and knowledge distillation are orthogonal to one another and may be applied jointly. The application of knowledge distillation first before subsequently applying vocabulary transfer is recommended. Finally, model performance due to vocabulary transfer does not always show a consistent trend as the vocabulary size is reduced. Hence, the choice of vocabulary size should be empirically selected by evaluation on the downstream task similar to hyperparameter tuning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Day by day, machine learning is changing our lives in ways we could not have imagined just 5 years ago. ML expertise is more and more requested and needed, though just a limited number of ML engineers are available on the job market, and their knowledge is always limited by an inherent characteristic of theirs: they are humans. This thesis explores the possibilities offered by meta-learning, a new field in ML that takes learning a level higher: models are trained on other models' training data, starting from features of the dataset they were trained on, inference times, obtained performances, to try to understand the relationship between a good model and the way it was obtained. The so-called metamodel was trained on data collected by OpenML, the largest ML metadata platform that's publicly available today. Datasets were analyzed to obtain meta-features that describe them, which were then tied to model performances in a regression task. The obtained metamodel predicts the expected performances of a given model type (e.g., a random forest) on a given ML task (e.g., classification on the UCI census dataset). This research was then integrated into a custom-made AutoML framework, to show how meta-learning is not an end in itself, but it can be used to further progress our ML research. Encoding ML engineering expertise in a model allows better, faster, and more impactful ML applications across the whole world, while reducing the cost that is inevitably tied to human engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Combinatorial decision and optimization problems belong to numerous applications, such as logistics and scheduling, and can be solved with various approaches. Boolean Satisfiability and Constraint Programming solvers are some of the most used ones and their performance is significantly influenced by the model chosen to represent a given problem. This has led to the study of model reformulation methods, one of which is tabulation, that consists in rewriting the expression of a constraint in terms of a table constraint. To apply it, one should identify which constraints can help and which can hinder the solving process. So far this has been performed by hand, for example in MiniZinc, or automatically with manually designed heuristics, in Savile Row. Though, it has been shown that the performances of these heuristics differ across problems and solvers, in some cases helping and in others hindering the solving procedure. However, recent works in the field of combinatorial optimization have shown that Machine Learning (ML) can be increasingly useful in the model reformulation steps. This thesis aims to design a ML approach to identify the instances for which Savile Row’s heuristics should be activated. Additionally, it is possible that the heuristics miss some good tabulation opportunities, so we perform an exploratory analysis for the creation of a ML classifier able to predict whether or not a constraint should be tabulated. The results reached towards the first goal show that a random forest classifier leads to an increase in the performances of 4 different solvers. The experimental results in the second task show that a ML approach could improve the performance of a solver for some problem classes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mesoporous SBA-15 silica with uniform hexagonal pore, narrow pore size distribution and tuneable pore diameter was organofunctionalized with glutaraldehyde-bridged silylating agent. The precursor and its derivative silicas were ibuprofen-loaded for controlled delivery in simulated biological fluids. The synthesized silicas were characterized by elemental analysis, infrared spectroscopy, (13)C and (29)Si solid state NMR spectroscopy, nitrogen adsorption, X-ray diffractometry, thermogravimetry and scanning electron microscopy. Surface functionalization with amine containing bridged hydrophobic structure resulted in significantly decreased surface area from 802.4 to 63.0 m(2) g(-1) and pore diameter 8.0-6.0 nm, which ultimately increased the drug-loading capacity from 18.0% up to 28.3% and a very slow release rate of ibuprofen over the period of 72.5h. The in vitro drug release demonstrated that SBA-15 presented the fastest release from 25% to 27% and SBA-15GA gave near 10% of drug release in all fluids during 72.5 h. The Korsmeyer-Peppas model better fits the release data with the Fickian diffusion mechanism and zero order kinetics for synthesized mesoporous silicas. Both pore sizes and hydrophobicity influenced the rate of the release process, indicating that the chemically modified silica can be suggested to design formulation of slow and constant release over a defined period, to avoid repeated administration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the molecular mechanisms of oral carcinogenesis will yield important advances in diagnostics, prognostics, effective treatment, and outcome of oral cancer. Hence, in this study we have investigated the proteomic and peptidomic profiles by combining an orthotopic murine model of oral squamous cell carcinoma (OSCC), mass spectrometry-based proteomics and biological network analysis. Our results indicated the up-regulation of proteins involved in actin cytoskeleton organization and cell-cell junction assembly events and their expression was validated in human OSCC tissues. In addition, the functional relevance of talin-1 in OSCC adhesion, migration and invasion was demonstrated. Taken together, this study identified specific processes deregulated in oral cancer and provided novel refined OSCC-targeting molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two single crystalline surfaces of Au vicinal to the (111) plane were modified with Pt and studied using scanning tunneling microscopy (STM) and X-ray photoemission spectroscopy (XPS) in ultra-high vacuum environment. The vicinal surfaces studied are Au(332) and Au(887) and different Pt coverage (θPt) were deposited on each surface. From STM images we determine that Pt deposits on both surfaces as nanoislands with heights ranging from 1 ML to 3 ML depending on θPt. On both surfaces the early growth of Pt ad-islands occurs at the lower part of the step edge, with Pt ad-atoms being incorporated into the steps in some cases. XPS results indicate that partial alloying of Pt occurs at the interface at room temperature and at all coverage, as suggested by the negative chemical shift of Pt 4f core line, indicating an upward shift of the d-band center of the alloyed Pt. Also, the existence of a segregated Pt phase especially at higher coverage is detected by XPS. Sample annealing indicates that the temperature rise promotes a further incorporation of Pt atoms into the Au substrate as supported by STM and XPS results. Additionally, the catalytic activity of different PtAu systems reported in the literature for some electrochemical reactions is discussed considering our findings.