974 resultados para Rainfall Variability
Resumo:
The main biogeochemical nutrient distributions, along with ambient ocean temperature and the light field, control ocean biological productivity. Observations of nutrients are much sparser than physical observations of temperature and salinity, yet it is critical to validate biogeochemical models against these sparse observations if we are to successfully model biological variability and trends. Here we use data from the Bermuda Atlantic Time-series Study and the World Ocean Database 2005 to demonstrate quantitatively that over the entire globe a significant fraction of the temporal variability of phosphate, silicate and nitrate within the oceans is correlated with water density. The temporal variability of these nutrients as a function of depth is almost always greater than as a function of potential density, with he largest reductions in variability found within the main pycnocline. The greater nutrient variability as a function of depth occurs when dynamical processes vertically displace nutrient and density fields together on shorter timescales than biological adjustments. These results show that dynamical processes can have a significant impact on the instantaneous nutrient distributions. These processes must therefore be considered when modeling biogeochemical systems, when comparing such models with observations, or when assimilating data into such models.
Resumo:
Direct observations from an array of current meter moorings across the Mozambique Channel in the south-west Indian Ocean are presented covering a period of more than 4 years. This allows an analysis of the volume transport through the channel, including the variability on interannual and seasonal time scales. The mean volume transport over the entire observational period is 16.7 Sv poleward. Seasonal variations have a magnitude of 4.1 Sv and can be explained from the variability in the wind field over the western part of the Indian Ocean. Interannual variability has a magnitude of 8.9 Sv and is large compared to the mean. This time scale of variability could be related to variability in the Indian Ocean Dipole (IOD), showing that it forms part of the variability in the ocean-climate system of the entire Indian Ocean. By modulating the strength of the South Equatorial Current, the weakening (strengthening) tropical gyre circulation during a period of positive (negative) IOD index leads to a weakened (strengthened) southward transport through the channel, with a time lag of about a year. The relatively strong interannual variability stresses the importance of long-term direct observations.
Resumo:
The origin of the eddy variability around the 25°S band in the Indian Ocean is investigated. We have found that the surface circulation east of Madagascar shows an anticyclonic subgyre bounded to the south by eastward flow from southwest Madagascar, and to the north by the westward flowing South Equatorial Current (SEC) between 15° and 20°S. The shallow, eastward flowing South Indian Ocean Countercurrent (SICC) extends above the deep reaching, westward flowing SEC to 95°E around the latitude of the high variability band. Applying a two-layer model reveals that regions of large vertical shear along the SICC-SEC system are baroclinically unstable. Estimates of the frequencies (3.5–6 times/year) and wavelengths (290–470 km) of the unstable modes are close to observations of the mesoscale variability derived from altimetry data. It is likely then that Rossby wave variability locally generated in the subtropical South Indian Ocean by baroclinic instability is the origin of the eddy variability around 25°S as seen, for example, in satellite altimetry.
Resumo:
A connection is shown to exist between the mesoscale eddy activity around Madagascar and the large-scale interannual variability in the Indian Ocean. We use the combined TOPEX/Poseidon-ERS sea surface height (SSH) data for the period 1993–2003. The SSH-fields in the Mozambique Channel and east of Madagascar exhibit a significant interannual oscillation. This is related to the arrival of large-scale anomalies that propagate westward along 10°–15°S in response to the Indian Ocean dipole (IOD) events. Positive (negative) SSH anomalies associated to a positive (negative) IOD phase induce a shift in the intensity and position of the tropical and subtropical gyres. A weakening (strengthening) results in the intensity of the South Equatorial Current and its branches along east Madagascar. In addition, the flow through the narrows of the Mozambique Channel around 17°S increases (decreases) during periods of a stronger and northward (southward) extension of the subtropical (tropical) gyre. Interaction between the currents in the narrows and southward propagating eddies from the northern Channel leads to interannual variability in the eddy kinetic energy of the central Channel in phase with the one in the SSH-field.
Resumo:
We demonstrate that a new geomagnetic index of solar variability exhibits stronger correlations with atmospheric circulation variations than conventional measures. The circulation anomalies are particularly enhanced over the North Atlantic / Eurasian sector, where there are large changes in the occurrence of blocking and the winter mean surface temperature differs by several degrees between high- and low-solar terciles. The relationship is also simpler, being largely linear between high- and low-solar winters. While the circulation anomalies strongly resemble the North Atlantic Oscillation they also extend deeper into Eurasia, in a distinct signature which may be useful for the detection and attribution of observed changes and also the identification of dynamical mechanisms.
Resumo:
A powerful way to test the realism of ocean general circulation models is to systematically compare observations of passive tracer concentration with model predictions. The general circulation models used in this way cannot resolve a full range of vigorous mesoscale activity (on length scales between 10–100 km). In the real ocean, however, this activity causes important variability in tracer fields. Thus, in order to rationally compare tracer observations with model predictions these unresolved fluctuations (the model variability error) must be estimated. We have analyzed this variability using an eddy‐resolving reduced‐gravity model in a simple midlatitude double‐gyre configuration. We find that the wave number spectrum of tracer variance is only weakly sensitive to the distribution of (large scale slowly varying) tracer sources and sinks. This suggests that a universal passive tracer spectrum may exist in the ocean. We estimate the spectral shape using high‐resolution measurements of potential temperature on an isopycnal in the upper northeast Atlantic Ocean, finding a slope near k −1.7 between 10 and 500 km. The typical magnitude of the variance is estimated by comparing tracer simulations using different resolutions. For CFC‐ and tritium‐type transient tracers the peak magnitude of the model variability saturation error may reach 0.20 for scales shorter than 100 km. This is of the same order as the time mean saturation itself and well over an order of magnitude greater than the instrumental uncertainty.
Resumo:
Carbendazim is highly toxic to earthworms and is used as a standard control substance when running field-based trials of pesticides, but results using carbendazim are highly variable. In the present study, impacts of timing of rainfall events following carbendazim application on earthworms were investigated. Lumbricus terrestris were maintained in soil columns to which carbendazim and then deionized water (a rainfall substitute) were applied. Carbendazim was applied at 4 kg/ha, the rate recommended in pesticide field trials. Three rainfall regimes were investigated: initial and delayed heavy rainfall 24 h and 6 d after carbendazim application, and frequent rainfall every 48 h. Earthworm mortality and movement of carbendazim through the soil was assessed 14 d after carbendazim application. No detectable movement of carbendazim occurred through the soil in any of the treatments or controls. Mortality in the initial heavy and frequent rainfall was significantly higher (approximately 55%) than in the delayed rainfall treatment (approximately 25%). This was due to reduced bioavailability of carbendazim in the latter treatment due to a prolonged period of sorption of carbendazim to soil particles before rainfall events. The impact of carbendazim application on earthworm surface activity was assessed using video cameras. Carbendazim applications significantly reduced surface activity due to avoidance behavior of the earthworms. Surface activity reductions were least in the delayed rainfall treatment due to the reduced bioavailability of the carbendazim. The nature of rainfall events' impacts on the response of earthworms to carbendazim applications, and details of rainfall events preceding and following applications during field trials should be made at a higher level of resolution than is currently practiced according to standard International Organization for Standardization protocols.
Resumo:
Much of the atmospheric variability in the North Atlantic sector is associated with variations in the eddy-driven component of the zonal flow. Here we present a simple method to specifically diagnose this component of the flow using the low-level wind field (925–700 hpa ). We focus on the North Atlantic winter season in the ERA-40 reanalysis. Diagnostics of the latitude and speed of the eddy-driven jet stream are compared with conventional diagnostics of the North Atlantic Oscillation (NAO) and the East Atlantic (EA) pattern. This shows that the NAO and the EA both describe combined changes in the latitude and speed of the jet stream. It is therefore necessary, but not always sufficient, to consider both the NAO and the EA in identifying changes in the jet stream. The jet stream analysis suggests that there are three preferred latitudinal positions of the North Atlantic eddy-driven jet stream in winter. This result is in very good agreement with the application of a statistical mixture model to the two-dimensional state space defined by the NAO and the EA. These results are consistent with several other studies which identify four European/Atlantic regimes, comprising three jet stream patterns plus European blocking events.
Resumo:
An extensive statistical ‘downscaling’ study is done to relate large-scale climate information from a general circulation model (GCM) to local-scale river flows in SW France for 51 gauging stations ranging from nival (snow-dominated) to pluvial (rainfall-dominated) river-systems. This study helps to select the appropriate statistical method at a given spatial and temporal scale to downscale hydrology for future climate change impact assessment of hydrological resources. The four proposed statistical downscaling models use large-scale predictors (derived from climate model outputs or reanalysis data) that characterize precipitation and evaporation processes in the hydrological cycle to estimate summary flow statistics. The four statistical models used are generalized linear (GLM) and additive (GAM) models, aggregated boosted trees (ABT) and multi-layer perceptron neural networks (ANN). These four models were each applied at two different spatial scales, namely at that of a single flow-gauging station (local downscaling) and that of a group of flow-gauging stations having the same hydrological behaviour (regional downscaling). For each statistical model and each spatial resolution, three temporal resolutions were considered, namely the daily mean flows, the summary statistics of fortnightly flows and a daily ‘integrated approach’. The results show that flow sensitivity to atmospheric factors is significantly different between nival and pluvial hydrological systems which are mainly influenced, respectively, by shortwave solar radiations and atmospheric temperature. The non-linear models (i.e. GAM, ABT and ANN) performed better than the linear GLM when simulating fortnightly flow percentiles. The aggregated boosted trees method showed higher and less variable R2 values to downscale the hydrological variability in both nival and pluvial regimes. Based on GCM cnrm-cm3 and scenarios A2 and A1B, future relative changes of fortnightly median flows were projected based on the regional downscaling approach. The results suggest a global decrease of flow in both pluvial and nival regimes, especially in spring, summer and autumn, whatever the considered scenario. The discussion considers the performance of each statistical method for downscaling flow at different spatial and temporal scales as well as the relationship between atmospheric processes and flow variability.
Resumo:
This study aimed to establish relationships between maize yield and rainfall on different temporal and spatial scales, in order to provide a basis for crop monitoring and modelling. A 16-year series of maize yield and daily rainfall from 11 municipalities and micro-regions of Rio Grande do Sul State was used. Correlation and regression analyses were used to determine associations between crop yield and rainfall for the entire crop cycle, from tasseling to 30 days after, and from 5 days before tasseling to 40 days after. Close relationships between maize yield and rainfall were found, particularly during the reproductive period (45-day period comprising the flowering and grain filling). Relationships were closer on a regional scale than at smaller scales. Implications of the crop-rainfall relationships for crop modelling are discussed.
Resumo:
A methodology is presented for the development of a combined seasonal weather and crop productivity forecasting system. The first stage of the methodology is the determination of the spatial scale(s) on which the system could operate; this determination has been made for the case of groundnut production in India. Rainfall is a dominant climatic determinant of groundnut yield in India. The relationship between yield and rainfall has been explored using data from 1966 to 1995. On the all-India scale, seasonal rainfall explains 52% of the variance in yield. On the subdivisional scale, correlations vary between variance r(2) = 0.62 (significance level p < 10(-4)) and a negative correlation with r(2) = 0.1 (p = 0.13). The spatial structure of the relationship between rainfall and groundnut yield has been explored using empirical orthogonal function (EOF) analysis. A coherent, large-scale pattern emerges for both rainfall and yield. On the subdivisional scale (similar to 300 km), the first principal component (PC) of rainfall is correlated well with the first PC of yield (r(2) = 0.53, p < 10(-4)), demonstrating that the large-scale patterns picked out by the EOFs are related. The physical significance of this result is demonstrated. Use of larger averaging areas for the EOF analysis resulted in lower and (over time) less robust correlations. Because of this loss of detail when using larger spatial scales, the subdivisional scale is suggested as an upper limit on the spatial scale for the proposed forecasting system. Further, district-level EOFs of the yield data demonstrate the validity of upscaling these data to the subdivisional scale. Similar patterns have been produced using data on both of these scales, and the first PCs are very highly correlated (r(2) = 0.96). Hence, a working spatial scale has been identified, typical of that used in seasonal weather forecasting, that can form the basis of crop modeling work for the case of groundnut production in India. Last, the change in correlation between yield and seasonal rainfall during the study period has been examined using seasonal totals and monthly EOFs. A further link between yield and subseasonal variability is demonstrated via analysis of dynamical data.
Resumo:
The formulation of a new process-based crop model, the general large-area model (GLAM) for annual crops is presented. The model has been designed to operate on spatial scales commensurate with those of global and regional climate models. It aims to simulate the impact of climate on crop yield. Procedures for model parameter determination and optimisation are described, and demonstrated for the prediction of groundnut (i.e. peanut; Arachis hypogaea L.) yields across India for the period 1966-1989. Optimal parameters (e.g. extinction coefficient, transpiration efficiency, rate of change of harvest index) were stable over space and time, provided the estimate of the yield technology trend was based on the full 24-year period. The model has two location-specific parameters, the planting date, and the yield gap parameter. The latter varies spatially and is determined by calibration. The optimal value varies slightly when different input data are used. The model was tested using a historical data set on a 2.5degrees x 2.5degrees grid to simulate yields. Three sites are examined in detail-grid cells from Gujarat in the west, Andhra Pradesh towards the south, and Uttar Pradesh in the north. Agreement between observed and modelled yield was variable, with correlation coefficients of 0.74, 0.42 and 0, respectively. Skill was highest where the climate signal was greatest, and correlations were comparable to or greater than correlations with seasonal mean rainfall. Yields from all 35 cells were aggregated to simulate all-India yield. The correlation coefficient between observed and simulated yields was 0.76, and the root mean square error was 8.4% of the mean yield. The model can be easily extended to any annual crop for the investigation of the impacts of climate variability (or change) on crop yield over large areas. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Reanalysis data provide an excellent test bed for impacts prediction systems. because they represent an upper limit on the skill of climate models. Indian groundnut (Arachis hypogaea L.) yields have been simulated using the General Large-Area Model (GLAM) for annual crops and the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-yr reanalysis (ERA-40). The ability of ERA-40 to represent the Indian summer monsoon has been examined. The ability of GLAM. when driven with daily ERA-40 data, to model both observed yields and observed relationships between subseasonal weather and yield has been assessed. Mean yields "were simulated well across much of India. Correlations between observed and modeled yields, where these are significant. are comparable to correlations between observed yields and ERA-40 rainfall. Uncertainties due to the input planting window, crop duration, and weather data have been examined. A reduction in the root-mean-square error of simulated yields was achieved by applying bias correction techniques to the precipitation. The stability of the relationship between weather and yield over time has been examined. Weather-yield correlations vary on decadal time scales. and this has direct implications for the accuracy of yield simulations. Analysis of the skewness of both detrended yields and precipitation suggest that nonclimatic factors are partly responsible for this nonstationarity. Evidence from other studies, including data on cereal and pulse yields, indicates that this result is not particular to groundnut yield. The detection and modeling of nonstationary weather-yield relationships emerges from this study as an important part of the process of understanding and predicting the impacts of climate variability and change on crop yields.