986 resultados para Radiation detection
Resumo:
During recent decades, thermal and radioactive discharges from nuclear power plants into the aquatic environment have become the subject of lively debate as an ecological concern. The target of this thesis was to summarize the large quantity of results obtained in extensive monitoring programmes and studies carried out in recipient sea areas off the Finnish nuclear power plants at Loviisa and Olkiluoto during more than four decades. The Loviisa NPP is located on the coast of the Gulf of Finland and Olkiluoto NPP on that of the Bothnian Sea. The state of the Gulf of Finland is clearly more eutrophic; the nutrient concentrations in the surface water are about 1½ 2 times higher at Loviisa than at Olkiluoto, and the total phosphorus concentrations still increased in both areas (even doubled at Loviisa) between the early 1970s and 2000. Thus, it is a challenge to distinguish the local effects of thermal discharges from the general eutrophication process of the Gulf of Finland. The salinity is generally low in the brackish-water conditions of the northern Baltic Sea, being however about 1 higher at Olkiluoto than at Loviisa (the salinity of surface water varying at the latter from near to 0 in early spring to 4 6 in late autumn). Thus, many marine and fresh-water organisms live in the Loviisa area close to their limit of existence, which makes the biota sensitive to any additional stress. The characteristics of the discharge areas of the two sites differ from each other in many respects: the discharge area at Loviisa is a semi-enclosed bay in the inner archipelago, where the exchange of water is limited, while the discharge area at Olkiluoto is more open, and the exchange of water with the open Bothnian Sea is more effective. The effects of the cooling water discharged from the power plants on the temperatures in the sea were most obvious in winter. The formation of a permanent ice cover in the discharge areas has been delayed in early winter, and the break-up of the ice occurs earlier in spring. The prolonging of the growing season and the disturbance of the overwintering time, in conditions where the biota has adjusted to a distinct rest period in winter, have been the most significant biological effects of the thermal pollution. The soft-bottom macrofauna at Loviisa has deteriorated to the point of almost total extinction at many sampling stations during the past 40 years. A similar decline has been reported for the whole eastern Gulf of Finland. However, the local eutrophication process seems to have contributed into the decline of the zoobenthos in the discharge area at Loviisa. Thermal discharges have increased the production of organic matter, which again has led to more organic bottom deposits. These have in turn increased the tendency of the isolated deeps to a depletion of oxygen, and this has further caused strong remobilization of phosphorus from the bottom sediments. Phytoplankton primary production and primary production capacity doubled in the whole area between the late 1960s and the late 1990s, but started to decrease a little at the beginning of this century. The focus of the production shifted from spring to mid- and late summer. The general rise in the level of primary production was mainly due to the increase in nutrient concentrations over the whole Gulf of Finland, but the thermal discharge contributed to a stronger increase of production in the discharge area compared to that in the intake area. The eutrophication of littoral vegetation in the discharge area has been the most obvious, unambiguous and significant biological effect of the heated water. Myriophyllum spicatum, Potamogeton perfoliatus and Potamogeton pectinatus, and vigorous growths of numerous filamentous algae as their epiphytes have strongly increased in the vicinity of the cooling water outlet, where they have formed dense populations in the littoral zone in late summer. However, the strongest increase of phytobenthos has extended only to a distance of about 1 km from the outlet, i.e., the changes in vegetation have been largest in those areas that remain ice-free in winter. Similar trends were also discernible at Olkiluoto, but to a clearly smaller extent, which was due to the definitely weaker level of background eutrophy and nutrient concentrations in the Bothnian Sea, and the differing local hydrographical and biological factors prevailing in the Olkiluoto area. The level of primary production has also increased at Olkiluoto, but has remained at a clearly lower level than at Loviisa. In spite of the analogous changes observed in the macrozoobenthos, the benthic fauna has remained strong and diversified in the Olkiluoto area. Small amounts of local discharge nuclides were regularly detected in environmental samples taken from the discharge areas: tritium in seawater samples, and activation products, such as 60Co, 58Co, 54Mn, 110mAg, 51Cr, in suspended particulate matter, bottom sediments and in several indicator organisms (e.g., periphyton and Fucus vesiculosus) that effectively accumulate radioactive substances from the medium. The tritium discharges and the consequent detection frequency and concentrations of tritium in seawater were higher at Loviisa, but the concentrations of the activation products were higher at Olkiluoto, where traces of local discharge nuclides were also observed over a clearly wider area, due to the better exchange of water than at Loviisa, where local discharge nuclides were only detected outside Hästholmsfjärden Bay quite rarely and in smaller amounts. At the farthest, an insignificant trace amount (0.2 Bq kg-1 d.w.) of 60Co originating from Olkiluoto was detected in Fucus at a distance of 137 km from the power plant. Discharge nuclides from the local nuclear power plants were almost exclusively detected at the lower trophic levels of the ecosystems. Traces of local discharge nuclides were very seldom detected in fish, and even then only in very low quantities. As a consequence of the reduced discharges, the concentrations of local discharge nuclides in the environment have decreased noticeably in recent years at both Loviisa and Olkiluoto. Although the concentrations in environmental samples, and above all, the discharge data, are presented as seemingly large numbers, the radiation doses caused by them to the population and to the biota are very low, practically insignificant. The effects of the thermal discharges have been more significant, at least to the wildlife in the discharge areas of the cooling water, although the area of impact has been relatively small. The results show that the nutrient level and the exchange of water in the discharge area of a nuclear power plant are of crucial importance.
Resumo:
This paper presents 'vSpeak', the first initiative taken in Pakistan for ICT enabled conversion of dynamic Sign Urdu gestures into natural language sentences. To realize this, vSpeak has adopted a novel approach for feature extraction using edge detection and image compression which gives input to the Artificial Neural Network that recognizes the gesture. This technique caters for the blurred images as well. The training and testing is currently being performed on a dataset of 200 patterns of 20 words from Sign Urdu with target accuracy of 90% and above.
Resumo:
A geodesic-based approach using Lamb waves is proposed to locate the acoustic emission (AE) source and damage in an isotropic metallic structure. In the case of the AE (passive) technique, the elastic waves take the shortest path from the source to the sensor array distributed in the structure. The geodesics are computed on the meshed surface of the structure using graph theory based on Dijkstra's algorithm. By propagating the waves in reverse virtually from these sensors along the geodesic path and by locating the first intersection point of these waves, one can get the AE source location. The same approach is extended for detection of damage in a structure. The wave response matrix of the given sensor configuration for the healthy and the damaged structure is obtained experimentally. The healthy and damage response matrix is compared and their difference gives the information about the reflection of waves from the damage. These waves are backpropagated from the sensors and the above method is used to locate the damage by finding the point where intersection of geodesics occurs. In this work, the geodesic approach is shown to be suitable to obtain a practicable source location solution in a more general set-up on any arbitrary surface containing finite discontinuities. Experiments were conducted on aluminum specimens of simple and complex geometry to validate this new method.
Resumo:
In [8], we recently presented two computationally efficient algorithms named B-RED and P-RED for random early detection. In this letter, we present the mathematical proof of convergence of these algorithms under general conditions to local minima.
Resumo:
Composting refers to aerobic degradation of organic material and is one of the main waste treatment methods used in Finland for treating separated organic waste. The composting process allows converting organic waste to a humus-like end product which can be used to increase the organic matter in agricultural soils, in gardening, or in landscaping. Microbes play a key role as degraders during the composting-process, and the microbiology of composting has been studied for decades, but there are still open questions regarding the microbiota in industrial composting processes. It is known that with the traditional, culturing-based methods only a small fraction, below 1%, of the species in a sample is normally detected. In recent years an immense diversity of bacteria, fungi and archaea has been found to occupy many different environments. Therefore the methods of characterising microbes constantly need to be developed further. In this thesis the presence of fungi and bacteria in full-scale and pilot-scale composting processes was characterised with cloning and sequencing. Several clone libraries were constructed and altogether nearly 6000 clones were sequenced. The microbial communities detected in this study were found to differ from the compost microbes observed in previous research with cultivation based methods or with molecular methods from processes of smaller scale, although there were similarities as well. The bacterial diversity was high. Based on the non-parametric coverage estimations, the number of bacterial operational taxonomic units (OTU) in certain stages of composting was over 500. Sequences similar to Lactobacillus and Acetobacteria were frequently detected in the early stages of drum composting. In tunnel stages of composting the bacterial community comprised of Bacillus, Thermoactinomyces, Actinobacteria and Lactobacillus. The fungal diversity was found to be high and phylotypes similar to yeasts were abundantly found in the full-scale drum and tunnel processes. In addition to phylotypes similar to Candida, Pichia and Geotrichum moulds from genus Thermomyces and Penicillium were observed in tunnel stages of composting. Zygomycetes were detected in the pilot-scale composting processes and in the compost piles. In some of the samples there were a few abundant phylotypes present in the clone libraries that masked the rare ones. The rare phylotypes were of interest and a method for collecting them from clone libraries for sequencing was developed. With negative selection of the abundant phylotyps the rare ones were picked from the clone libraries. Thus 41% of the clones in the studied clone libraries were sequenced. Since microbes play a central role in composting and in many other biotechnological processes, rapid methods for characterization of microbial diversity would be of value, both scientifically and commercially. Current methods, however, lack sensitivity and specificity and are therefore under development. Microarrays have been used in microbial ecology for a decade to study the presence or absence of certain microbes of interest in a multiplex manner. The sequence database collected in this thesis was used as basis for probe design and microarray development. The enzyme assisted detection method, ligation-detection-reaction (LDR) based microarray, was adapted for species-level detection of microbes characteristic of each stage of the composting process. With the use of a specially designed control probe it was established that a species specific probe can detect target DNA representing as little as 0.04% of total DNA in a sample. The developed microarray can be used to monitor composting processes or the hygienisation of the compost end product. A large compost microbe sequence dataset was collected and analysed in this thesis. The results provide valuable information on microbial community composition during industrial scale composting processes. The microarray method was developed based on the sequence database collected in this study. The method can be utilised in following the fate of interesting microbes during composting process in an extremely sensitive and specific manner. The platform for the microarray is universal and the method can easily be adapted for studying microbes from environments other than compost.
Resumo:
This paper reports a numerical study of the laminar conjugate natural convection heat transfer with and without the interaction of the surface radiation in a horizontal cylindrical annulus formed between an inner heat generating solid circular cylinder and an outer isothermal circular boundary. Numerical solutions are obtained by solving the governing equations with a pressure correction method on a collocated (non-staggered) mesh. Steady-state results are presented for the flow and temperature distributions and Nusselt numbers for the heat generation based Grashof number ranging from 10(7) to 10(10), solid-to-fluid thermal conductivity ratios of 1, 5, 10, 50 and 100, radius ratios of 0.226 and 0.452 and surface emissivities of 0-0.8 with air as the working medium. It is observed that surface radiation reduces the convective heat transfer in the annulus compared to the pure natural convection case and enhances the overall Nusselt number.
Resumo:
The problem of unsupervised anomaly detection arises in a wide variety of practical applications. While one-class support vector machines have demonstrated their effectiveness as an anomaly detection technique, their ability to model large datasets is limited due to their memory and time complexity for training. To address this issue for supervised learning of kernel machines, there has been growing interest in random projection methods as an alternative to the computationally expensive problems of kernel matrix construction and sup-port vector optimisation. In this paper we leverage the theory of nonlinear random projections and propose the Randomised One-class SVM (R1SVM), which is an efficient and scalable anomaly detection technique that can be trained on large-scale datasets. Our empirical analysis on several real-life and synthetic datasets shows that our randomised 1SVM algorithm achieves comparable or better accuracy to deep auto encoder and traditional kernelised approaches for anomaly detection, while being approximately 100 times faster in training and testing.
Resumo:
This paper presents a novel crop detection system applied to the challenging task of field sweet pepper (capsicum) detection. The field-grown sweet pepper crop presents several challenges for robotic systems such as the high degree of occlusion and the fact that the crop can have a similar colour to the background (green on green). To overcome these issues, we propose a two-stage system that performs per-pixel segmentation followed by region detection. The output of the segmentation is used to search for highly probable regions and declares these to be sweet pepper. We propose the novel use of the local binary pattern (LBP) to perform crop segmentation. This feature improves the accuracy of crop segmentation from an AUC of 0.10, for previously proposed features, to 0.56. Using the LBP feature as the basis for our two-stage algorithm, we are able to detect 69.2% of field grown sweet peppers in three sites. This is an impressive result given that the average detection accuracy of people viewing the same colour imagery is 66.8%.
Resumo:
Generating discriminative input features is a key requirement for achieving highly accurate classifiers. The process of generating features from raw data is known as feature engineering and it can take significant manual effort. In this paper we propose automated feature engineering to derive a suite of additional features from a given set of basic features with the aim of both improving classifier accuracy through discriminative features, and to assist data scientists through automation. Our implementation is specific to HTTP computer network traffic. To measure the effectiveness of our proposal, we compare the performance of a supervised machine learning classifier built with automated feature engineering versus one using human-guided features. The classifier addresses a problem in computer network security, namely the detection of HTTP tunnels. We use Bro to process network traffic into base features and then apply automated feature engineering to calculate a larger set of derived features. The derived features are calculated without favour to any base feature and include entropy, length and N-grams for all string features, and counts and averages over time for all numeric features. Feature selection is then used to find the most relevant subset of these features. Testing showed that both classifiers achieved a detection rate above 99.93% at a false positive rate below 0.01%. For our datasets, we conclude that automated feature engineering can provide the advantages of increasing classifier development speed and reducing development technical difficulties through the removal of manual feature engineering. These are achieved while also maintaining classification accuracy.
Resumo:
In many parts of the world, uncontrolled fires in sparsely populated areas are a major concern as they can quickly grow into large and destructive conflagrations in short time spans. Detecting these fires has traditionally been a job for trained humans on the ground, or in the air. In many cases, these manned solutions are simply not able to survey the amount of area necessary to maintain sufficient vigilance and coverage. This paper investigates the use of unmanned aerial systems (UAS) for automated wildfire detection. The proposed system uses low-cost, consumer-grade electronics and sensors combined with various airframes to create a system suitable for automatic detection of wildfires. The system employs automatic image processing techniques to analyze captured images and autonomously detect fire-related features such as fire lines, burnt regions, and flammable material. This image recognition algorithm is designed to cope with environmental occlusions such as shadows, smoke and obstructions. Once the fire is identified and classified, it is used to initialize a spatial/temporal fire simulation. This simulation is based on occupancy maps whose fidelity can be varied to include stochastic elements, various types of vegetation, weather conditions, and unique terrain. The simulations can be used to predict the effects of optimized firefighting methods to prevent the future propagation of the fires and greatly reduce time to detection of wildfires, thereby greatly minimizing the ensuing damage. This paper also documents experimental flight tests using a SenseFly Swinglet UAS conducted in Brisbane, Australia as well as modifications for custom UAS.
Resumo:
This thesis added new insight to research knowledge about the role that season and ultraviolet radiation (UV) exposure during pregnancy has on children's temperament and behaviours, using a nation-wide longitudinal study. It was found that young children born in summer months are likely to have problematic behaviours. The thesis also found that summer-born children are likely to receive lowest levels of UV exposure during the gestational period. Finally, this work showed that low gestational UV exposure is associated with an increased risk of behavioural problems in children.
Resumo:
One-dimensional (1D) proton NMR spectra of enantiomers are generally undecipherable in chiral orienting poly-gamma-benzyl-L-glutamate (PBLG)/CDCl3 solvent. This arises due to large number of couplings, in addition to superposition of spectra from both the enantiomers, severely hindering the H-1 detection. On the other hand in the present study the benefit is derived front the presence of several couplings among the entire network of interacting protons. Transition selective 1D H-1-H-1 correlation experiment (1D-COSY) which utilizes the Coupling assisted transfer of magnetization not only for unraveling the overlap but also for the selective detection of enantiopure spectrum is reported. The experiment is simple, easy to implement and provides accurate eanantiomeric excess in addition to the determination of the proton-proton couplings of an enantiomer within a short experimental time (few minutes). (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
In this paper, we present a low-complexity algorithm for detection in high-rate, non-orthogonal space-time block coded (STBC) large-multiple-input multiple-output (MIMO) systems that achieve high spectral efficiencies of the order of tens of bps/Hz. We also present a training-based iterative detection/channel estimation scheme for such large STBC MIMO systems. Our simulation results show that excellent bit error rate and nearness-to-capacity performance are achieved by the proposed multistage likelihood ascent search (M-LAS) detector in conjunction with the proposed iterative detection/channel estimation scheme at low complexities. The fact that we could show such good results for large STBCs like 16 X 16 and 32 X 32 STBCs from Cyclic Division Algebras (CDA) operating at spectral efficiencies in excess of 20 bps/Hz (even after accounting for the overheads meant for pilot based training for channel estimation and turbo coding) establishes the effectiveness of the proposed detector and channel estimator. We decode perfect codes of large dimensions using the proposed detector. With the feasibility of such a low-complexity detection/channel estimation scheme, large-MIMO systems with tens of antennas operating at several tens of bps/Hz spectral efficiencies can become practical, enabling interesting high data rate wireless applications.