976 resultados para REUSABLE CATALYST
Resumo:
The reactivity of the species formed at the surface of a Au/Ce(La)O2 catalyst during the water������¢���¯���¿���½���¯���¿���½gas shift (WGS) reaction were investigated by operando diffuse reflectance Fourier transform spectroscopy (DRIFTS) at the chemical steady state during isotopic transient kinetic analyses (SSITKA). The exchanges of the reaction product CO2 and of formate and carbonate surface species were followed during an isotopic exchange of the reactant CO using a DRIFTS cell as a single reactor. The DRIFTS cell was a modified commercial cell that yielded identical reaction rates to that measured over a quartz plug-flow reactor. The DRIFTS signal was used to quantify the relative oncentrations of the surface species and CO2. The analysis of the formate exchange curves between 428 and 493 K showed that at least two levels of reactivity were present. ������¢���¯���¿���½���¯���¿���½Slow formates������¢���¯���¿���½���¯���¿���½ displayed an exchange rate constant 10- to 20-fold slower than that of the reaction product CO2. ������¢���¯���¿���½���¯���¿���½Fast formates������¢���¯���¿���½���¯���¿���½ were exchanged on a time scale similar to that of CO2. Multiple nonreactive readsorption of CO2 took place, accounting for the kinetics of the exchange of CO2(g) and making it impossible to determine the number of active sites through the SSITKA technique. The concentration (in mol g������¢���¯���¿���½���¯���¿���½1) of formates on the catalyst was determined through a calibration curve and allowed calculation of the specific rate of formate decomposition. The rate of CO2 formation was more than an order of magnitude higher than the rate of decomposition of formates (slow + fast species), indicating that all of the formates detected by DRIFTS could not be the main reaction intermediates in the production of CO2. This work stresses the importance of full quantitative analyses (measuring both rate constants and adsorbate concentrations) when investigating the role of adsorbates as potential reaction intermediates, and illustrates how even reactive species seen by DRIFTS may be unimportant in the overall reaction scheme.
Resumo:
The present work investigates the reactivity of the surface species observable by in situ DRIFTS formed over a Pt/ZrO2 during the water-gas shift (WGS) reaction. A DRIFTS cell/mass spectrometer system was operated at the chemical steady state during isotopic transients to yield information about the true nature (i.e., main reaction intermediate or spectators) of adsorbates. Only carbonyl and formate species were observed by DRIFTS under reaction conditions; the surface coverage of carbonate species was negligible. Isotopic transient kinetic analyses revealed that formates exchanged uniformly according to a first-order law, suggesting that most formates observed by DRIFTS were of the same reactivity. In addition, the time scale of the exchange of the reaction product CO2 was significantly shorter than that of the surface formates. Therefore, a formate route based on the formates as detected by DRIFTS can be ruled out as the main reaction pathway in the present case. The number of precursors of the reaction product CO2 was smaller than the number of surface Pt atoms, suggesting that carbonyl species or some \
Resumo:
The preparation of porous films directly deposited onto the surface of catalyst particles is attracting increasing attention. We report here for the first time a method that can be carried out at ambient pressure for the preparation of porous films deposited over 3 mm diameter catalyst particles of silica-supported Pt-Fe. Characterization of the sample prepared at ambient pressure (i.e., open air, OA) and its main structural differences as compared with a Na-A (LTA) coated catalyst made using an autoclave-based method are presented. The OA-coated material predominantly exhibited an amorphous film over the catalyst surface with between 4 and 13% of crystallinity as compared with fully crystallized LTA zeolite crystals. This coated sample was highly selective for CO oxidation in the presence of butane with no butane oxidation observed up to 350 degrees C. This indicates, for the first time, that the presence of a crystalline membrane is not necessary for the difference in light off temperature between CO and butane to be achieved and that amorphous films may also produce this effect. An examination of the space velocity dependence and adsorption of Na+ on the catalysts indicates that the variation in CO and butane oxidation activity is not caused by site blocking predominantly, although the Pt activity was lowered by contact with this alkali.
Resumo:
Natural dolomitic rock has been investigated in the transesterification of C-4 and C-8 triglycerides and olive oil with a view to determining its viability as a solid base catalyst for use in biodiesel synthesis. XRD reveals that the dolomitic rock comprised 77% dolomite and 23% magnesian calcite. The generation of basic sites requires calcination at 900 degrees C, which increases the surface area and transforms the mineral into MgO nanocrystallites dispersed over CaO particles. Calcined dolomitic rock exhibits high activity towards the liquid phase transesterification of glyceryl tributyrate and trioctanoate, and even olive oil, with methanol for biodiesel production.
Resumo:
CO multipulse temporal analysis of products (TAP) experiments were used to characterize a ceria-supported platinum catalyst after various oxidative and reductive pretreatments using O-2, H2O, CO2, and H-2. Based on the amount of CO consumed, using the final CO-saturated catalyst composition as the common state point, the oxidatively pretreated catalyst could be described using a general scale. From a kinetic analysis of the CO multipulse responses, two kinetic regimes corresponding to two types of active sites could be identified. As the temperature was raised, the number of the most active sites did not change while the amount of the less active site increased. Comparison of the number of active sites determined from the TAP data reported herein with that determined by a previous steady-state isotope transient kinetic analysis experiment showed excellent agreement. This correlation indicates that the (very fast response) TAP experiments can provide information regarding the number and type of active sites that are relevant to a catalyst under real reaction conditions. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
The present report investigates the role of formate species as potential reaction intermediates for the WGS reaction (CO + H2O -> CO2 + H-2) over a Pt-CeO2 catalyst. A combination of operando techniques, i.e., in situ diffuse reflectance FT-IR (DRIFT) spectroscopy and mass spectrometry (MS) during steady-state isotopic transient kinetic analysis (SSITKA), was used to relate the exchange of the reaction product CO2 to that of surface formate species. The data presented here suggest that a switchover from a non-formate to a formate-based mechanism could take place over a very narrow temperature range (as low as 60 K) over our Pt-CeO2 catalyst. This observation clearly stresses the need to avoid extrapolating conclusions to the case of results obtained under even slightly different experimental conditions. The occurrence of a low-temperature mechanism, possibly redox or Mars van Krevelen-like, that deactivates above 473 K because of ceria over-reduction is suggested as a possible explanation for the switchover, similarly to the case of the CO-NO reaction over Cu, I'd and Rh-CeZrOx (see Kaspar and co-workers [1-3]). (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Methane activation is a crucial step in the conversion of methane to valuable oxygenated products. In heterogeneous catalysis, however, methane activation often leads to complete dissociation: If a catalyst can activate the first C-H bond in CH4, it can often break the remaining C-H bonds. In this study, using density functional theory, we illustrate that single C-H bond activation in CH4 is possible. We choose a model system which consists of isolated Pt atoms on a MoO3(010) surface. We find that the Pt atoms on this surface can readily activate the first C-H bond in methane. The reaction barrier of only 0.3 eV obtained in this study is significantly lower than that on a Pt(111) surface. We also find, in contrast to the processes on pure metal surfaces, that the further dehydrogenation of methyl (CH3) is very energetically unfavorable on the MoO3-supported Pt catalyst. (C) 2002 American Institute of Physics.
Resumo:
The liquid phase selective hydrogenation of cinnamaldehyde to cinnamyl alcohol has been carried out over a graphite-supported iridium catalyst. The effect of reaction parameters such as temperature, pressure, concentration of reactant, the effect of addition of product to the feed and pre-reduction of the catalyst were studied. In situ pre-reduction of the catalyst with hydrogen had a very significant enhancing effect on the conversion of cinnamaldehyde and selectivity of the catalyst to cinnamyl alcohol. Kinetic analysis of the pre-reduced catalyst showed that the reaction is zero order with respect to cinnamaldehyde and first order with respect to hydrogen. The reaction follows an Arrhenius behaviour with an activation energy of 37 kJ mol(-1). Detailed analysis of the reaction showed that hydrogenation of the C=C double bond to give hydrocinnamaldehyde predominantly occurred at low conversions of cinnamaldehyde (
Resumo:
The kinetics of the water-gas shift reaction Were Studied on a 0.2% Pt/CeO2 catalyst between 177 and 300 degrees C over a range of CO and steam pressures. A rate decrease with increasing partial pressure of CO was experimentally observed over this sample, confirming that a negative order in CO can occur under certain conditions at low temperatures. The apparent reaction order of CO measured at 197 degrees C was about -0.27. This value is significantly larger than that (i.e, -0.03) reported by Ribeiro and co-workers [A.A. Phatak, N. Koryabkina, S. Rai, J.L. Ratts, W. Ruettinger, R.J. Farrauto, G.E. Blau, W.N. Delgass, F.H. Ribeiro, Catal. Today 123 (2007) 224] at a similar temperature. A kinetic peculiarity was also evidenced, i.e. a maximum of the reaction rate as a function of the CO concentration or possibly a kinetic break, which is sometimes observed in the oxidation of simple molecules. These observations support the idea that competitive adsorption of CO and H2O play an essential role in the reaction mechanism. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Molecular hydrogenation catalysts have been co-entrapped with the ionic liquid [Bmim]NTf(2) inside a silica matrix by a sot-gel method. These catalytic ionogels have been compared to simple catalyst-doped glasses, the parent homogeneous catalysts, commercial heterogeneous catalysts, and Rh-doped mesoporous silica. The most active ionogel has been characterised by transmission electron microscopy, X-ray photoelectron spectroscopy, and solid state NMR before and after catalysis. The ionogel catalysts were found to be remarkably active, recyclable and resistant to chemical change.
Resumo:
Ring-opened metathesis polymers and copolymers have been formed from norbornene, norbornadiene, a range of their derivatives, and cyclopentene using RuCl2(CHPh)(PCy3)(2), as catalyst. C-13 NMR analysis of the polymers illustrate a rather selective propagation reaction. The catalyst is highly regioselective, and the polymers are generally high trans with a strong isotactic bias. However, polymers from diene monomers tend to be less isotactic than those from the corresponding monoenes, and in the case of 7-methylnorbornadiene the polymer has an overall syndiotactic bias. A rate enhancing effect, noted previously, due to an oxygen atom proximate to the monomer double bond, is less pronounced than with other initiators. Catalyst activity, in the case of certain diene monomers, was shown to be monomer dependent and rate enhancements were also achieved using phenol as solvent. The results are interpreted in terms of the steric and electronic properties of both the catalyst and the monomers.
Resumo:
Two distinct systems for the rhodium-catalyzed enantioselective desymmetrization of meso-cyclic anhydrides have been developed. Each system has been optimized and are compatible with the use of in situ prepared organozinc reagents. Rhodium/PHOX species efficiently catalyze the addition of alkyl nucleophiles to glutaric anhydrides, while a rhodium/phosphoramidite system is effective in the enantioselective arylation of succinic and glutaric anhydrides.