921 resultados para RADIATIVE ELECTRON-CAPTURE
Resumo:
Composites of wind speeds, equivalent potential temperature, mean sea level pressure, vertical velocity, and relative humidity have been produced for the 100 most intense extratropical cyclones in the Northern Hemisphere winter for the 40-yr ECMWF Re-Analysis (ERA-40) and the high resolution global environment model (HiGEM). Features of conceptual models of cyclone structure—the warm conveyor belt, cold conveyor belt, and dry intrusion—have been identified in the composites from ERA-40 and compared to HiGEM. Such features can be identified in the composite fields despite the smoothing that occurs in the compositing process. The surface features and the three-dimensional structure of the cyclones in HiGEM compare very well with those from ERA-40. The warm conveyor belt is identified in the temperature and wind fields as a mass of warm air undergoing moist isentropic uplift and is very similar in ERA-40 and HiGEM. The rate of ascent is lower in HiGEM, associated with a shallower slope of the moist isentropes in the warm sector. There are also differences in the relative humidity fields in the warm conveyor belt. In ERA-40, the high values of relative humidity are strongly associated with the moist isentropic uplift, whereas in HiGEM these are not so strongly associated. The cold conveyor belt is identified as rearward flowing air that undercuts the warm conveyor belt and produces a low-level jet, and is very similar in HiGEM and ERA-40. The dry intrusion is identified in the 500-hPa vertical velocity and relative humidity. The structure of the dry intrusion compares well between HiGEM and ERA-40 but the descent is weaker in HiGEM because of weaker along-isentrope flow behind the composite cyclone. HiGEM’s ability to represent the key features of extratropical cyclone structure can give confidence in future predictions from this model.
Resumo:
Suprathermal electrons (>70 eV) form a small fraction of the total solar wind electron density but serve as valuable tracers of heliospheric magnetic field topology. Their usefulness as tracers of magnetic loops with both feet rooted on the Sun, however, most likely fades as the loops expand beyond some distance owing to scattering. As a first step toward quantifying that distance, we construct an observationally constrained model for the evolution of the suprathermal electron pitch-angle distributions on open field lines. We begin with a near-Sun isotropic distribution moving antisunward along a Parker spiral magnetic field while conserving magnetic moment, resulting in a field-aligned strahl within a few solar radii. Past this point, the distribution undergoes little evolution with heliocentric distance. We then add constant (with heliocentric distance, energy, and pitch angle) ad-hoc pitch-angle scattering. Close to the Sun, pitch-angle focusing still dominates, again resulting in a narrow strahl. Farther from the Sun, however, pitch-angle scattering dominates because focusing is effectively weakened by the increasing angle between the magnetic field direction and intensity gradient, a result of the spiral field. We determine the amount of scattering required to match Ulysses observations of strahl width in the fast solar wind, providing an important tool for inferring the large-scale properties and topologies of field lines in the interplanetary medium. Although the pitch-angle scattering term is independent of energy, time-of-flight effects in the spiral geometry result in an energy dependence of the strahl width that is in the observed sense although weaker in magnitude.
Resumo:
Counterstreaming electrons (CSEs) are treated as signatures of closed magnetic flux, i.e., loops connected to the Sun at both ends. However, CSEs at 1 AU likely fade as the apex of a closed loop passes beyond some distance R, owing to scattering of the sunward beam along its continually increasing path length. The remaining antisunward beam at 1 AU would then give a false signature of open flux. Subsequent opening of a loop at the Sun by interchange reconnection with an open field line would produce an electron dropout (ED) at 1 AU, as if two open field lines were reconnecting to completely disconnect from the Sun. Thus EDs can be signatures of interchange reconnection as well as the commonly attributed disconnection. We incorporate CSE fadeout into a model that matches time-varying closed flux from interplanetary coronal mass ejections (ICMEs) to the solar cycle variation in heliospheric flux. Using the observed occurrence rate of CSEs at solar maximum, the model estimates R ∼ 8–10 AU. Hence we demonstrate that EDs should be much rarer than CSEs at 1 AU, as EDs can only be detected when the juncture points of reconnected field lines lie sunward of the detector, whereas CSEs continue to be detected in the legs of all loops that have expanded beyond the detector, out to R. We also demonstrate that if closed flux added to the heliosphere by ICMEs is instead balanced by disconnection elsewhere, then ED occurrence at 1 AU would still be rare, contrary to earlier expectations.
Resumo:
Suprathermal electrons (E > 80 eV) carry heat flux away from the Sun. Processes controlling the heat flux are not well understood. To gain insight into these processes, we model heat flux as a linear dependence on two independent parameters: electron number flux and electron pitch angle anisotropy. Pitch angle anisotropy is further modeled as a linear dependence on two solar wind components: magnetic field strength and plasma density. These components show no correlation with number flux, reinforcing its independence from pitch angle anisotropy. Multiple linear regression applied to 2 years of Wind data shows good correspondence between modeled and observed heat flux and anisotropy. The results suggest that the interplay of solar wind parameters and electron number flux results in distinctive heat flux dropouts at heliospheric features like plasma sheets but that these parameters continuously modify heat flux. This is inconsistent with magnetic disconnection as the primary cause of heat flux dropouts. Analysis of fast and slow solar wind regimes separately shows that electron number flux and pitch angle anisotropy are equally correlated with heat flux in slow wind but that number flux is the dominant correlative in fast wind. Also, magnetic field strength correlates better with pitch angle anisotropy in slow wind than in fast wind. The energy dependence of the model fits suggests different scattering processes in fast and slow wind.
Resumo:
Aeolian mineral dust aerosol is an important consideration in the Earth's radiation budget as well as a source of nutrients to oceanic and land biota. The modelling of aeolian mineral dust has been improving consistently despite the relatively sparse observations to constrain them. This study documents the development of a new dust emissions scheme in the Met Office Unified ModelTM (MetUM) based on the Dust Entrainment and Deposition (DEAD) module. Four separate case studies are used to test and constrain the model output. Initial testing was undertaken on a large dust event over North Africa in March 2006 with the model constrained using AERONET data. The second case study involved testing the capability of the model to represent dust events in the Middle East without being re-tuned from the March 2006 case in the Sahara. While the model is unable to capture some of the daytime variation in AERONET AOD there is good agreement between the model and observed dust events. In the final two case studies new observations from in situ aircraft data during the Dust Outflow and Deposition to the Ocean (DODO) campaigns in February and August 2006 were used. These recent observations provided further data on dust size distributions and vertical profiles to constrain the model. The modelled DODO cases were also compared to AERONET data to make sure the radiative properties of the dust were comparable to observations. Copyright © 2009 Royal Meteorological Society and Crown Copyright
Resumo:
The Aerosol Direct Radiative Experiment (ADRIEX) took place over the Adriatic and Black Seas during August and September 2004 with the aim of characterizing anthropogenic aerosol in these regions in terms of its physical and optical properties and establishing its impact on radiative balance. Eight successful flights of the UK BAE-146 Facility for Atmospheric Airborne Measurements were completed together with surface-based lidar and AERONET measurements, in conjunction with satellite overpasses. This paper outlines the motivation for the campaign, the methodology and instruments used, describes the synoptic situation and provides an overview of the key results. ADRIEX successfully measured a range of aerosol conditions across the northern Adriatic, Po Valley and Black Sea. Generally two layers of aerosol were found in the vertical: in the flights over the Black Sea and the Po Valley these showed differences in chemical and microphysical properties, whilst over the Adriatic the layers were often more similar. Nitrate aerosol was found to be important in the Po Valley region. The use of new instruments to measure the aerosol chemistry and mixing state and to use this information in determining optical properties is demonstrated. These results are described in much more detail in the subsequent papers of this special issue.
Resumo:
Aerosols and their precursors are emitted abundantly by transport activities. Transportation constitutes one of the fastest growing activities and its growth is predicted to increase significantly in the future. Previous studies have estimated the aerosol direct radiative forcing from one transport sub-sector, but only one study to our knowledge estimated the range of radiative forcing from the main aerosol components (sulphate, black carbon (BC) and organic carbon) for the whole transportation sector. In this study, we compare results from two different chemical transport models and three radiation codes under different hypothesis of mixing: internal and external mixing using emission inventories for the year 2000. The main results from this study consist of a positive direct radiative forcing for aerosols emitted by road traffic of +20±11 mW m−2 for an externally mixed aerosol, and of +32±13 mW m−2 when BC is internally mixed. These direct radiative forcings are much higher than the previously published estimate of +3±11 mW m−2. For transport activities from shipping, the net direct aerosol radiative forcing is negative. This forcing is dominated by the contribution of the sulphate. For both an external and an internal mixture, the radiative forcing from shipping is estimated at −26±4 mW m−2. These estimates are in very good agreement with the range of a previously published one (from −46 to −13 mW m−2) but with a much narrower range. By contrast, the direct aerosol forcing from aviation is estimated to be small, and in the range −0.9 to +0.3 mW m−2.
Resumo:
Broadband shortwave and longwave radiative fluxes observed both at the surface and from space during the Radiative Atmospheric Divergence using ARM Mobile Facility, GERB data and AMMA Stations (RADAGAST) experiment in Niamey, Niger, in 2006 are presented. The surface fluxes were measured by the Atmospheric Radiation Measurement (ARM) Program Mobile Facility (AMF) at Niamey airport, while the fluxes at the top of the atmosphere (TOA) are from the Geostationary Earth Radiation Budget (GERB) instrument on the Meteosat-8 satellite. The data are analyzed as daily averages, in order to minimize sampling differences between the surface and top of atmosphere instruments, while retaining the synoptic and seasonal changes that are the main focus of this study. A cloud mask is used to identify days with cloud versus those with predominantly clear skies. The influence of temperature, water vapor, aerosols, and clouds is investigated. Aerosols are ubiquitous throughout the year and have a significant impact on both the shortwave and longwave fluxes. The large and systematic seasonal changes in temperature and column integrated water vapor (CWV) through the dry and wet seasons are found to exert strong influences on the longwave fluxes. These influences are often in opposition to each other, because the highest temperatures occur at the end of the dry season when the CWV is lowest, while in the wet season the lowest temperatures are associated with the highest values of CWV. Apart from aerosols, the shortwave fluxes are also affected by clouds and by the seasonal changes in CWV. The fluxes are combined to provide estimates of the divergence of radiation across the atmosphere throughout 2006. The longwave divergence shows a relatively small variation through the year, because of a partial compensation between the seasonal variations in the outgoing longwave radiation (OLR) and surface net longwave radiation. A simple model of the greenhouse effect is used to interpret this result in terms of the dependence of the normalized greenhouse effect at the TOA and of the effective emissivity of the atmosphere at the surface on the CWV. It is shown that, as the CWV increases, the atmosphere loses longwave energy to the surface with about the same increasing efficiency with which it traps the OLR. When combined with the changes in temperature, this maintains the atmospheric longwave divergence within the narrow range that is observed. The shortwave divergence is mainly determined by the CWV and aerosol loadings and the effect of clouds is much smaller than on the component fluxes.
Resumo:
The community pharmacy service medicines use review (MUR) was introduced in 2005 ‘to improve patient knowledge, concordance and use of medicines’ through a private patient–pharmacist consultation. The MUR presents a fundamental change in community pharmacy service provision. While traditionally pharmacists are dispensers of medicines and providers of medicines advice, and patients as recipients, the MUR considers pharmacists providing consultation-type activities and patients as active participants. The MUR facilitates a two-way discussion about medicines use. Traditional patient–pharmacist behaviours transform into a new set of behaviours involving the booking of appointments, consultation processes and form completion, and the physical environment of the patient–pharmacist interaction moves from the traditional setting of the dispensary and medicines counter to a private consultation room. Thus, the new service challenges traditional identities and behaviours of the patient and the pharmacist as well as the environment in which the interaction takes place. In 2008, the UK government concluded there is at present too much emphasis on the quantity of MURs rather than on their quality.[1] A number of plans to remedy the perceived imbalance included a suggestion to reward ‘health outcomes’ achieved, with calls for a more focussed and scientific approach to the evaluation of pharmacy services using outcomes research. Specifically, the UK government set out the main principal research areas for the evaluation of pharmacy services to include ‘patient and public perceptions and satisfaction’as well as ‘impact on care and outcomes’. A limited number of ‘patient satisfaction with pharmacy services’ type questionnaires are available, of varying quality, measuring dimensions relating to pharmacists’ technical competence, behavioural impressions and general satisfaction. For example, an often cited paper by Larson[2] uses two factors to measure satisfaction, namely ‘friendly explanation’ and ‘managing therapy’; the factors are highly interrelated and the questions somewhat awkwardly phrased, but more importantly, we believe the questionnaire excludes some specific domains unique to the MUR. By conducting patient interviews with recent MUR recipients, we have been working to identify relevant concepts and develop a conceptual framework to inform item development for a Patient Reported Outcome Measure questionnaire bespoke to the MUR. We note with interest the recent launch of a multidisciplinary audit template by the Royal Pharmaceutical Society of Great Britain (RPSGB) in an attempt to review the effectiveness of MURs and improve their quality.[3] This template includes an MUR ‘patient survey’. We will discuss this ‘patient survey’ in light of our work and existing patient satisfaction with pharmacy questionnaires, outlining a new conceptual framework as a basis for measuring patient satisfaction with the MUR. Ethical approval for the study was obtained from the NHS Surrey Research Ethics Committee on 2 June 2008. References 1. Department of Health (2008). Pharmacy in England: Building on Strengths – Delivering the Future. London: HMSO. www. official-documents.gov.uk/document/cm73/7341/7341.pdf (accessed 29 September 2009). 2. Larson LN et al. Patient satisfaction with pharmaceutical care: update of a validated instrument. JAmPharmAssoc 2002; 42: 44–50. 3. Royal Pharmaceutical Society of Great Britain (2009). Pharmacy Medicines Use Review – Patient Audit. London: RPSGB. http:// qi4pd.org.uk/index.php/Medicines-Use-Review-Patient-Audit. html (accessed 29 September 2009).
Resumo:
Gallaborane (GaBH6, 1), synthesized by the metathesis of LiBH4 with [H2GaCl]n at ca. 250 K, has been characterized by chemical analysis and by its IR and 1H and 11B NMR spectra. The IR spectrum of the vapor at low pressure implies the presence of only one species, viz. H2Ga(μ-H)2BH2, with a diborane-like structure conforming to C2v symmetry. The structure of this molecule has been determined by gas-phase electron diffraction (GED) measurements afforced by the results of ab initio molecular orbital calculations. Hence the principal distances (rα in Å) and angles ( α in deg) are as follows: r(Ga•••B), 2.197(3); r(Ga−Ht), 1.555(6); r(Ga−Hb), 1.800(6); r(B−Ht), 1.189(7); r(B−Hb), 1.286(7); Hb−Ga−Hb, 71.6(4); and Hb−B−Hb, 110.0(5) (t = terminal, b = bridging). Aggregation of the molecules occurs in the condensed phases. X-ray crystallographic studies of a single crystal at 110 K reveal a polymeric network with helical chains made up of alternating pseudotetrahedral GaH4 and BH4 units linked through single hydrogen bridges; the average Ga•••B distance is now 2.473(7) Å. The compound decomposes in the condensed phases at temperatures exceeding ca. 240 K with the formation of elemental Ga and H2 and B2H6. The reactions with NH3, Me3N, and Me3P are also described.
Resumo:
Optical data are compared with EISCAT radar observations of multiple Naturally Enhanced Ion-Acoustic Line (NEIAL) events in the dayside cusp. This study uses narrow field of view cameras to observe small-scale, short-lived auroral features. Using multiple-wavelength optical observations, a direct link between NEIAL occurrences and low energy (about 100 eV) optical emissions is shown. This is consistent with the Langmuir wave decay interpretation of NEIALs being driven by streams of low-energy electrons. Modelling work connected with this study shows that, for the measured ionospheric conditions and precipitation characteristics, growth of unstable Langmuir (electron plasma) waves can occur, which decay into ion-acoustic wave modes. The link with low energy optical emissions shown here, will enable future studies of the shape, extent, lifetime, grouping and motions of NEIALs.
Resumo:
The year 2000 radiative forcing (RF) due to changes in O3 and CH4 (and the CH4-induced stratospheric water vapour) as a result of emissions of short-lived gases (oxides of nitrogen (NOx), carbon monoxide and non-methane hydrocarbons) from three transport sectors (ROAD, maritime SHIPping and AIRcraft) are calculated using results from five global atmospheric chemistry models. Using results from these models plus other published data, we quantify the uncertainties. The RF due to short-term O3 changes (i.e. as an immediate response to the emissions without allowing for the long-term CH4 changes) is positive and highest for ROAD transport (31mWm-2) compared to SHIP (24 mWm-2) and AIR (17 mWm-2) sectors in four of the models. All five models calculate negative RF from the CH4 perturbations, with a larger impact from the SHIP sector than for ROAD and AIR. The net RF of O3 and CH4 combined (i.e. including the impact of CH4 on ozone and stratospheric water vapour) is positive for ROAD (+16(±13)(one standard deviation) mWm-2) and AIR (+6(±5) mWm-2) traffic sectors and is negative for SHIP (-18(±10) mWm-2) sector in all five models. Global Warming Potentials (GWP) and Global Temperature change Potentials (GTP) are presented for AIR NOx emissions; there is a wide spread in the results from the 5 chemistry models, and it is shown that differences in the methane response relative to the O3 response drive much of the spread.
Resumo:
A case study of atmospheric aerosol measurements exploring the impact of the vertical distribution of aerosol chemical composition upon the radiative budget in North-Western Europe is presented. Sub-micron aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS) on both an airborne platform and a ground-based site at Cabauw in the Netherlands. The examined period in May 2008 was characterised by enhanced pollution loadings in North-Western Europe and was dominated by ammonium nitrate and Organic Matter (OM). Both ammonium nitrate and OM were observed to increase with altitude in the atmospheric boundary layer. This is primarily attributed to partitioning of semi-volatile gas phase species to the particle phase at reduced temperature and enhanced relative humidity. Increased ammonium nitrate concentrations in particular were found to strongly increase the ambient scattering potential of the aerosol burden, which was a consequence of the large amount of associated water as well as the enhanced mass. During particularly polluted conditions, increases in aerosol optical depth of 50–100% were estimated to occur due to the observed increase in secondary aerosol mass and associated water uptake. Furthermore, the single scattering albedo was also shown to increase with height in the boundary layer. These enhancements combined to increase the negative direct aerosol radiative forcing by close to a factor of two at the median percentile level. Such increases have major ramifications for regional climate predictions as semi-volatile components are often not included in aerosol models. The results presented here provide an ideal opportunity to test regional and global representations of both the aerosol vertical distribution and subsequent impacts in North-Western Europe. North-Western Europe can be viewed as an analogue for the possible future air quality over other polluted regions of the Northern Hemisphere, where substantial reductions in sulphur dioxide emissions have yet to occur. Anticipated reductions in sulphur dioxide in polluted regions will result in an increase in the availability of ammonia to form ammonium nitrate as opposed to ammonium sulphate. This will be most important where intensive agricultural practises occur. Our observations over North-Western Europe, a region where sulphur dioxide emissions have already been reduced, indicate that failure to include the semi-volatile behaviour of ammonium nitrate will result in significant errors in predicted aerosol direct radiative forcing. Such errors will be particularly significant on regional scales.
Resumo:
1. Suction sampling is a popular method for the collection of quantitative data on grassland invertebrate populations, although there have been no detailed studies into the effectiveness of the method. 2. We investigate the effect of effort (duration and number of suction samples) and sward height on the efficiency of suction sampling of grassland beetle, true bug, planthopper and spider Populations. We also compare Suction sampling with an absolute sampling method based on the destructive removal of turfs. 3. Sampling for durations of 16 seconds was sufficient to collect 90% of all individuals and species of grassland beetles, with less time required for the true bugs, spiders and planthoppers. The number of samples required to collect 90% of the species was more variable, although in general 55 sub-samples was sufficient for all groups, except the true bugs. Increasing sward height had a negative effect on the capture efficiency of suction sampling. 4. The assemblage structure of beetles, planthoppers and spiders was independent of the sampling method (suction or absolute) used. 5. Synthesis and applications. In contrast to other sampling methods used in grassland habitats (e.g. sweep netting or pitfall trapping), suction sampling is an effective quantitative tool for the measurement of invertebrate diversity and assemblage structure providing sward height is included as a covariate. The effective sampling of beetles, true bugs, planthoppers and spiders altogether requires a minimum sampling effort of 110 sub-samples of duration of 16 seconds. Such sampling intensities can be adjusted depending on the taxa sampled, and we provide information to minimize sampling problems associated with this versatile technique. Suction sampling should remain an important component in the toolbox of experimental techniques used during both experimental and management sampling regimes within agroecosystems, grasslands or other low-lying vegetation types.