968 resultados para Quasilinear partial differential equations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A precise and simple computational model to generate well-behaved two-dimensional turbulent flows is presented. The whole approach rests on the use of stochastic differential equations and is general enough to reproduce a variety of energy spectra and spatiotemporal correlation functions. Analytical expressions for both the continuous and the discrete versions, together with simulation algorithms, are derived. Results for two relevant spectra, covering distinct ranges of wave numbers, are given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stochastic processes defined by a general Langevin equation of motion where the noise is the non-Gaussian dichotomous Markov noise are studied. A non-FokkerPlanck master differential equation is deduced for the probability density of these processes. Two different models are exactly solved. In the second one, a nonequilibrium bimodal distribution induced by the noise is observed for a critical value of its correlation time. Critical slowing down does not appear in this point but in another one.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diffusion of passive scalars convected by turbulent flows is addressed here. A practical procedure to obtain stochastic velocity fields with well¿defined energy spectrum functions is also presented. Analytical results are derived, based on the use of stochastic differential equations, where the basic hypothesis involved refers to a rapidly decaying turbulence. These predictions are favorable compared with direct computer simulations of stochastic differential equations containing multiplicative space¿time correlated noise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser systems can be used to detect very weak optical signals. The physical mechanism is the dynamical process of the relaxation of a laser from an unstable state to a steady stable state. We present an analysis of this process based on the study of the nonlinear relaxation time. Our analytical results are compared with numerical integration of the stochastic differential equations that model this process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modeling of water movement in non-saturated soil usually requires a large number of parameters and variables, such as initial soil water content, saturated water content and saturated hydraulic conductivity, which can be assessed relatively easily. Dimensional flow of water in the soil is usually modeled by a nonlinear partial differential equation, known as the Richards equation. Since this equation cannot be solved analytically in certain cases, one way to approach its solution is by numerical algorithms. The success of numerical models in describing the dynamics of water in the soil is closely related to the accuracy with which the water-physical parameters are determined. That has been a big challenge in the use of numerical models because these parameters are generally difficult to determine since they present great spatial variability in the soil. Therefore, it is necessary to develop and use methods that properly incorporate the uncertainties inherent to water displacement in soils. In this paper, a model based on fuzzy logic is used as an alternative to describe water flow in the vadose zone. This fuzzy model was developed to simulate the displacement of water in a non-vegetated crop soil during the period called the emergency phase. The principle of this model consists of a Mamdani fuzzy rule-based system in which the rules are based on the moisture content of adjacent soil layers. The performances of the results modeled by the fuzzy system were evaluated by the evolution of moisture profiles over time as compared to those obtained in the field. The results obtained through use of the fuzzy model provided satisfactory reproduction of soil moisture profiles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We explicitly construct a closed system of differential equations describing the electromagnetic and gravitational interactions among bodies to first order in the coupling constants, retaining terms up to order c-2. The Breit and Barker and O'Connell Hamiltonians are recovered by means of a coordinate transformation. The method used throws light on the meaning of these coordinates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the Hamiltonian formulation of predictive relativistic systems, the canonical coordinates cannot be the physical positions. The relation between them is given by the individuality differential equations. However, due to the arbitrariness in the choice of Cauchy data, there is a wide family of solutions for these equations. In general, those solutions do not satisfy the condition of constancy of velocities moduli, and therefore we have to reparametrize the world lines into the proper time. We derive here a condition on the Cauchy data for the individuality equations which ensures the constancy of the velocities moduli and makes the reparametrization unnecessary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En una memoria anterior sobre la aplicación de los funcionales abeloides a la resolución de las ecuaciones en derivadas parciales de cuarto orden con coeficientes constantes (1), se hizo la clasificación de las ecuaciones cuyo cono característico posee una generatriz tacnodal. Entre las ecuaciones de tipo totalmente hiperbólico se destacaron dos casos: según que el cono característico correspondiente sea de género O (primer caso), o bien sea de género 1 (segundo caso). En la citada memoria se estudia dicho primer caso, mientras que en ésta trataremos del segundo: con más precisión, se tratará de resolver las ecuaciones en derivadas parciales del tipo indicado cuyo cono característico además de ser de género 1, sea simétrico respecto al plano tangente al cono a lo largo de la generatriz tacnodal. El desarrollo de los cálculos es aquí muy penoso pero se puede evitar mediante consideraciones sintéticas sobre los resultados obtenidos en la menloria anteriormente citada.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is very well known that the first succesful valuation of a stock option was done by solving a deterministic partial differential equation (PDE) of the parabolic type with some complementary conditions specific for the option. In this approach, the randomness in the option value process is eliminated through a no-arbitrage argument. An alternative approach is to construct a replicating portfolio for the option. From this viewpoint the payoff function for the option is a random process which, under a new probabilistic measure, turns out to be of a special type, a martingale. Accordingly, the value of the replicating portfolio (equivalently, of the option) is calculated as an expectation, with respect to this new measure, of the discounted value of the payoff function. Since the expectation is, by definition, an integral, its calculation can be made simpler by resorting to powerful methods already available in the theory of analytic functions. In this paper we use precisely two of those techniques to find the well-known value of a European call