894 resultados para Quasilinear Elliptic Problems
Resumo:
Background: Shifting gaze and attention ahead of the hand is a natural component in the performance of skilled manual actions. Very few studies have examined the precise co-ordination between the eye and hand in children with Developmental Coordination Disorder (DCD). Methods This study directly assessed the maturity of eye-hand co-ordination in children with DCD. A double-step pointing task was used to investigate the coupling of the eye and hand in 7-year-old children with and without DCD. Sequential targets were presented on a computer screen, and eye and hand movements were recorded simultaneously. Results There were no differences between typically developing (TD) and DCD groups when completing fast single-target tasks. There were very few differences in the completion of the first movement in the double-step tasks, but differences did occur during the second sequential movement. One factor appeared to be the propensity for the DCD children to delay their hand movement until some period after the eye had landed on the target. This resulted in a marked increase in eye-hand lead during the second movement, disrupting the close coupling and leading to a slower and less accurate hand movement among children with DCD. Conclusions In contrast to skilled adults, both groups of children preferred to foveate the target prior to initiating a hand movement if time allowed. The TD children, however, were more able to reduce this foveation period and shift towards a feedforward mode of control for hand movements. The children with DCD persevered with a look-then-move strategy, which led to an increase in error. For the group of DCD children in this study, there was no evidence of a problem in speed or accuracy of simple movements, but there was a difficulty in concatenating the sequential shifts of gaze and hand required for the completion of everyday tasks or typical assessment items.
Resumo:
The objective of this study was to determine insight in patients with Huntington's disease (HD) by contrasting patients' ability to rate their own behavior with their ability to rate a person other than themselves. HD patients and carers completed the Dysexecutive Questionnaire (DEX), rating themselves and each other at two time points. The temporal stability of these ratings was initially examined using these two time points since there is no published test-retest reliability of the DEX with this Population to date. This was followed by a comparison of patients' self-ratings and carer's independent ratings of patients by performing correlations with patients' disease variables, and in exploratory factor analysis was conducted on both sets of ratings. The DEX showed good test-retest reliability, with patients consistently and persistently underestimating the degree of their dysexecutive behavior, but not that of their carers. Patients' self-ratings and caters' ratings of patients both showed that dysexecutive behavior in HD can be fractionated into three underlying components (Cognition, Self-regulation, Insight), and the relative ranking of these factors was similar for both data sets. HD patients consistently underestimated the extent of only their own dysexecutive behaviors relative to carers' ratings by 26%, but were similar in ascribing ranks to the components of dysexecutive behavior. (c) 2005 Movement Disorder Society.
Resumo:
Objective: Community-based care for mental disorders places considerable burden on families and carers. Measuring their experiences has become a priority, but there is no consensus on appropriate instruments. We aimed to review instruments carers consider relevant to their needs and assess evidence for their use. Method: A literature search was conducted for outcome measures used with mental health carers. Identified instruments were assessed for their relevance to the outcomes identified by carers and their psychometric properties. Results: Three hundred and ninety two published articles referring to 241 outcome measures were identified, 64 of which were eligible for review (used in three or more studies). Twenty-six instruments had good psychometric properties; they measured (i) carers' well-being, (ii) the experience of caregiving and (iii) carers' needs for professional support. Conclusion: Measures exist which have been used to assess the most salient aspects of carer outcome in mental health. All require further work to establish their psychometric properties fully.
Resumo:
Inverse problems for dynamical system models of cognitive processes comprise the determination of synaptic weight matrices or kernel functions for neural networks or neural/dynamic field models, respectively. We introduce dynamic cognitive modeling as a three tier top-down approach where cognitive processes are first described as algorithms that operate on complex symbolic data structures. Second, symbolic expressions and operations are represented by states and transformations in abstract vector spaces. Third, prescribed trajectories through representation space are implemented in neurodynamical systems. We discuss the Amari equation for a neural/dynamic field theory as a special case and show that the kernel construction problem is particularly ill-posed. We suggest a Tikhonov-Hebbian learning method as regularization technique and demonstrate its validity and robustness for basic examples of cognitive computations.
Resumo:
We report rates of regression and associated findings in a population derived group of 255 children aged 9-14 years, participating in a prevalence study of autism spectrum disorders (ASD); 53 with narrowly defined autism, 105 with broader ASD and 97 with non-ASD neurodevelopmental problems, drawn from those with special educational needs within a population of 56,946 children. Language regression was reported in 30% with narrowly defined autism, 8% with broader ASD and less than 3% with developmental problems without ASD. A smaller group of children were identified who underwent a less clear setback. Regression was associated with higher rates of autistic symptoms and a deviation in developmental trajectory. Regression was not associated with epilepsy or gastrointestinal problems.
Resumo:
A hybridised and Knowledge-based Evolutionary Algorithm (KEA) is applied to the multi-criterion minimum spanning tree problems. Hybridisation is used across its three phases. In the first phase a deterministic single objective optimization algorithm finds the extreme points of the Pareto front. In the second phase a K-best approach finds the first neighbours of the extreme points, which serve as an elitist parent population to an evolutionary algorithm in the third phase. A knowledge-based mutation operator is applied in each generation to reproduce individuals that are at least as good as the unique parent. The advantages of KEA over previous algorithms include its speed (making it applicable to large real-world problems), its scalability to more than two criteria, and its ability to find both the supported and unsupported optimal solutions.
Resumo:
This paper illustrates how nonlinear programming and simulation tools, which are available in packages such as MATLAB and SIMULINK, can easily be used to solve optimal control problems with state- and/or input-dependent inequality constraints. The method presented is illustrated with a model of a single-link manipulator. The method is suitable to be taught to advanced undergraduate and Master's level students in control engineering.
Resumo:
In this paper we deal with performance analysis of Monte Carlo algorithm for large linear algebra problems. We consider applicability and efficiency of the Markov chain Monte Carlo for large problems, i.e., problems involving matrices with a number of non-zero elements ranging between one million and one billion. We are concentrating on analysis of the almost Optimal Monte Carlo (MAO) algorithm for evaluating bilinear forms of matrix powers since they form the so-called Krylov subspaces. Results are presented comparing the performance of the Robust and Non-robust Monte Carlo algorithms. The algorithms are tested on large dense matrices as well as on large unstructured sparse matrices.
Resumo:
In this paper we analyse applicability and robustness of Markov chain Monte Carlo algorithms for eigenvalue problems. We restrict our consideration to real symmetric matrices. Almost Optimal Monte Carlo (MAO) algorithms for solving eigenvalue problems are formulated. Results for the structure of both - systematic and probability error are presented. It is shown that the values of both errors can be controlled independently by different algorithmic parameters. The results present how the systematic error depends on the matrix spectrum. The analysis of the probability error is presented. It shows that the close (in some sense) the matrix under consideration is to the stochastic matrix the smaller is this error. Sufficient conditions for constructing robust and interpolation Monte Carlo algorithms are obtained. For stochastic matrices an interpolation Monte Carlo algorithm is constructed. A number of numerical tests for large symmetric dense matrices are performed in order to study experimentally the dependence of the systematic error from the structure of matrix spectrum. We also study how the probability error depends on the balancing of the matrix. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
We study boundary value problems for a linear evolution equation with spatial derivatives of arbitrary order, on the domain 0 < x < L, 0 < t < T, with L and T positive nite constants. We present a general method for identifying well-posed problems, as well as for constructing an explicit representation of the solution of such problems. This representation has explicit x and t dependence, and it consists of an integral in the k-complex plane and of a discrete sum. As illustrative examples we solve some two-point boundary value problems for the equations iqt + qxx = 0 and qt + qxxx = 0.
Resumo:
We investigate the spectrum of certain integro-differential-delay equations (IDDEs) which arise naturally within spatially distributed, nonlocal, pattern formation problems. Our approach is based on the reformulation of the relevant dispersion relations with the use of the Lambert function. As a particular application of this approach, we consider the case of the Amari delay neural field equation which describes the local activity of a population of neurons taking into consideration the finite propagation speed of the electric signal. We show that if the kernel appearing in this equation is symmetric around some point a= 0 or consists of a sum of such terms, then the relevant dispersion relation yields spectra with an infinite number of branches, as opposed to finite sets of eigenvalues considered in previous works. Also, in earlier works the focus has been on the most rightward part of the spectrum and the possibility of an instability driven pattern formation. Here, we numerically survey the structure of the entire spectra and argue that a detailed knowledge of this structure is important within neurodynamical applications. Indeed, the Amari IDDE acts as a filter with the ability to recognise and respond whenever it is excited in such a way so as to resonate with one of its rightward modes, thereby amplifying such inputs and dampening others. Finally, we discuss how these results can be generalised to the case of systems of IDDEs.
Resumo:
In a previous paper (J. of Differential Equations, Vol. 249 (2010), 3081-3098) we examined a family of periodic Sturm-Liouville problems with boundary and interior singularities which are highly non-self-adjoint but have only real eigenvalues. We now establish Schatten class properties of the associated resolvent operator.