960 resultados para Protein kinase C (PKC)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although glucocorticoids are widely used as antiinflammatory agents in clinical therapies, they may cause serious side effects that include insulin resistance and hyperinsulinemia. To study the potential functional adaptations of the islet of Langerhans to in vivo glucocorticoid treatment, adult Wistar rats received dexamethasone (DEX) for 5 consecutive days, whereas controls (CTL) received only saline. The analysis of insulin release in freshly isolated islets showed an enhanced secretion in response to glucose in DEX-treated rats. The study of Ca2 2+ signals by fluorescence microscopy also demonstrated a higher response to glucose in islets from DEX-treated animals. However, no differences in Ca2 2+signals were found between both groups with tolbutamide or KCl, indicating that the alterations were probably related to metabolism. Thus, mitochondrial function was explored by monitoring oxidation of nicotinamide dinucleotide phosphate autofluorescence and mitochondrial membrane potential. Both parameters revealed a higher response to glucose in islets from DEX-treated rats. The mRNA and protein content of glucose transporter-2, glucokinase, and pyruvate kinase was similar in both groups, indicating that changes in these proteins were probably not involved in the increased mitochondrial function. Additionally,weexplored the status of Ca2 2+-dependent signaling kinases. Unlike calmodulin kinase II, we found an augmented phosphorylation level of protein kinase Cα as well as an increased response of the phospholipase C/inositol 1,4,5-triphosphate pathway in DEX-treated rats. Finally, an increased number of docked secretory granules were observed in the β-cells of DEX animals using transmission electron microscopy. Thus, these results demonstrate that islets from glucocorticoid-treated rats develop several adaptations that lead to an enhanced stimulus-secretion coupling and secretory capacity. Copyright © 2010 by The Endocrine Society.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Loss of response on repetitive drug exposure (i.e., tachyphylaxis) is a particular problem for the vasoconstrictor effects of medications containing oxymetazoline (OXY), an α1-adrenoceptor (AR) agonist of the imidazoline class. One cause of tachyphylaxis is receptor desensitization, usually accompanied by phosphorylation and internalization. It is well established that a1A-ARs are less phosphorylated, desensitized, and internalized on exposure to the phenethylamines norepinephrine (NE), epinephrine, or phenylephrine (PE) than are the a1B and a1D subtypes. However, here we show in human embryonic kidney-293 cells that the low-efficacy agonist OXY induces G protein-coupled receptor kinase 2-dependent a1A-AR phosphorylation, followed by rapid desensitization and internalization (∼40% internalization after 5 minutes of stimulation), whereas phosphorylation of α1A-ARs exposed to NE depends to a large extent on protein kinase C activity and is not followed by desensitization, and the receptors undergo delayed internalization (∼35% after 60 minutes of stimulation). Native α1A-ARs from rat tail artery and vas deferens are also desensitized by OXY, but not by NE or PE, indicating that thisproperty of OXY is not limited to recombinant receptors expressed in cell systems. The results of the present study are clearly indicative of agonist-directed a1A-AR regulation. OXY shows functional selectivity relative to NE and PE at a1A-ARs, leading to significant receptor desensitization and internalization, which is important in view of the therapeutic vasoconstrictor effects of this drug and the varied biologic process regulated by α1A-ARs. Copyright © 2013 by The American Society for Pharmacology and Experimental Therapeutics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The putative eukaryotic translation initiation factor 5A (eIF5A) is a highly conserved protein among archaea and eukaryotes that has recently been implicated in the elongation step of translation. eIF5A undergoes an essential and conserved posttranslational modification at a specific lysine to generate the residue hypusine. The enzymes deoxyhypusine synthase (Dys1) and deoxyhypusine hydroxylase (Lia1) catalyze this two-step modification process. Although several Saccharomyces cerevisiae eIF5A mutants have importantly contributed to the study of eIF5A function, no conditional mutant of Dys1 has been described so far. In this study, we generated and characterized the dys1-1 mutant, which showed a strong depletion of mutated Dys1 protein, resulting in more than 2-fold decrease in hypusine levels relative to the wild type. The dys1-1 mutant demonstrated a defect in total protein synthesis, a defect in polysome profile indicative of a translation elongation defect and a reduced association of eIF5A with polysomes. The growth phenotype of dys1-1 mutant is severe, growing only in the presence of 1 M sorbitol, an osmotic stabilizer. Although this phenotype is characteristic of Pkc1 cell wall integrity mutants, the sorbitol requirement from dys1-1 is not associated with cell lysis. We observed that the dys1-1 genetically interacts with the sole yeast protein kinase C (Pkc1) and Asc1, a component of the 40S ribosomal subunit. The dys1-1 mutant was synthetically lethal in combination with asc1Δ and overexpression of TIF51A (eIF5A) or DYS1 is toxic for an asc1Δ strain. Moreover, eIF5A is more associated with translating ribosomes in the absence of Asc1 in the cell. Finally, analysis of the sensitivity to cell wall-perturbing compounds revealed a more similar behavior of the dys1-1 and asc1Δ mutants in comparison with the pkc1Δ mutant. These data suggest a correlated role for eIF5A and Asc1 in coordinating the translational control of a subset of mRNAs associated with cell integrity. © 2013 Galvão et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Medicina Veterinária - FCAV

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Na+/H+ exchanger isoform 3 (NHE3) is essential for HCO3- reabsorption in renal proximal tubules. The expression and function of NHE3 must adapt to acid-base conditions. The goal of this study was to elucidate the mechanisms responsible for higher proton secretion in proximal tubules during acidosis and to evaluate whether there are differences between metabolic and respiratory acidosis with regard to NHE3 modulation and, if so, to identify the relevant parameters that may trigger these distinct adaptive responses. We achieved metabolic acidosis by lowering HCO3- concentration in the cell culture medium and respiratory acidosis by increasing CO2 tension in the incubator chamber. We found that cell-surface NHE3 expression was increased in response to both forms of acidosis. Mild (pH 7.21 +/- 0.02) and severe (6.95 +/- 0.07) metabolic acidosis increased mRNA levels, at least in part due to up-regulation of transcription, whilst mild (7.11 +/- 0.03) and severe (6.86 +/- 0.01) respiratory acidosis did not up-regulate NHE3 expression. Analyses of the Nhe3 promoter region suggested that the regulatory elements sensitive to metabolic acidosis are located between -466 and -153 bp, where two consensus binding sites for SP1, a transcription factor up-regulated in metabolic acidosis, were localised. We conclude that metabolic acidosis induces Nhe3 promoter activation, which results in higher mRNA and total protein level. At the plasma membrane surface, NHE3 expression was increased in metabolic and respiratory acidosis alike, suggesting that low pH is responsible for NHE3 displacement to the cell surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transition from gestation to lactation is characterized by a robust adaptation of maternal pancreatic beta-cells. Consistent with the loss of beta-cell mass, glucose-induced insulin secretion is down-regulated in the islets of early lactating dams. Extensive experimental evidence has demonstrated that the surge of prolactin is responsible for the morphofunctional remodeling of the maternal endocrine pancreas during pregnancy, but the precise molecular mechanisms by which this phenotype is rapidly reversed after delivery are not completely understood. This study investigated whether glucocorticoid-regulated expression of Rasd1/Dexras, a small inhibitoryGprotein, is involved in this physiological plasticity. Immunofluorescent staining demonstrated that Rasd1 is localized within pancreatic beta-cells. Rasd1 expression in insulin-secreting cells was increased by dexamethasone and decreased by prolactin. In vivo data confirmed that Rasd1 expression is decreased in islets from pregnant rats and increased in islets from lactating mothers. Knockdown of Rasd1 abolished the inhibitory effects of dexamethasone on insulin secretion and the protein kinase A, protein kinase C, and ERK1/2 pathways. Chromatin immunoprecipitation experiments revealed that glucocorticoid receptor (GR) and signal transducer and activator of transcription 5b (STAT5b) cooperatively mediate glucocorticoid-induced Rasd1 expression in islets. Prolactin inhibited the stimulatory effect of GR/STAT5b complex on Rasd1 transcription. Overall, our data indicate that the stimulation of Rasd1 expression by glucocorticoid at the end of pregnancy reverses the increased insulin secretion that occurs during pregnancy. Prolactin negatively regulates this pathway by inhibiting GR/STAT5b transcriptional activity on the Rasd1 gene. (Endocrinology 153: 3668-3678, 2012)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ADAM17, which is also known as TNF alpha-converting enzyme, is the major sheddase for the EGF receptor ligands and is considered to be one of the main proteases responsible for the ectodomain shedding of surface proteins. How a membrane-anchored proteinase with an extracellular catalytic domain can be activated by inside-out regulation is not completely understood. We characterized thioredoxin-1 (Trx-1) as a partner of the ADAM17 cytoplasmic domain that could be involved in the regulation of ADAM17 activity. We induced the overexpression of the ADAM17 cytoplasmic domain in HEK293 cells, and ligands able to bind this domain were identified by MS after protein immunoprecipitation. Trx-1 was also validated as a ligand of the ADAM17 cytoplasmic domain and full-length ADAM17 recombinant proteins by immunoblotting, immunolocalization, and solid phase binding assay. In addition, using nuclear magnetic resonance, it was shown in vitro that the titration of the ADAM17 cytoplasmic domain promotes changes in the conformation of Trx-1. The MS analysis of the cross-linked complexes showed cross-linking between the two proteins by lysine residues. To further evaluate the functional role of Trx-1, we used a heparin-binding EGF shedding cell model and observed that the overexpression of Trx-1 in HEK293 cells could decrease the activity of ADAM17, activated by either phorbol 12-myristate 13-acetate or EGF. This study identifies Trx-1 as a novel interaction partner of the ADAM17 cytoplasmic domain and suggests that Trx-1 is a potential candidate that could be involved in ADAM17 activity regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study reports the identification of two new staurosporine derivatives, 2-hydroxy-7-oxostaurosporine (1) and 3-hydroxy-7-oxostaurosporine (2), obtained from mid-polar fractions of an aqueous methanol extract of the tunicate Eudistoma vannamei, endemic to the northeast coast of Brazil. The mixture of 1 and 2 displayed IC50 values in the nM range and was up to 14 times more cytotoxic than staurosporine across a panel of tumor cell lines, as evaluated using the MTT assay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Systemic sclerosis (SSc) is characterized by fibrosis of the skin and internal organs. The present study was undertaken to examine the effects of ciprofloxacin, a fluoroquinolone antibiotic implicated in matrix remodeling, on dermal and lung fibroblasts obtained from SSc patients. Dermal and lung fibroblasts from SSc patients and healthy subjects were treated with ciprofloxacin. Western blotting was used to analyze protein levels and RT-PCR was used to measure in RNA expression. The pharmacologic inhibitor UO126 was used to block Erk1/2 signaling. SSc dermal fibroblasts demonstrated a significant decrease in collagen type I mRNA and protein levels after antibiotic treatment, while healthy dermal fibroblasts were less sensitive to ciprofloxacin, downregulating collagen only at the protein levels. Connective tissue growth factor (CCN2) gene expression was significantly reduced and matrix metalloproteinase (MMPI) levels were enhanced after ciprofloxacin treatment to a similar extent in healthy and SSc fibroblasts. Ciprofloxacin induced Erk1/2 phosphorylation, and Erk1/2 blockade completely prevented MMP1 upregulation. However. Smad1 and Smad3 activation in response to TGF beta was not affected. The expression of friend leukemia integration factor 1 (Fli1). a transcriptional repressor of collagen, was increased after treatment with ciprofloxacin only in SSc fibroblasts, and this was accompanied by a decrease in the levels of DNA methyltransferase 1 (Dnmt1). Similar effects were observed in SSc-interstitial lung disease (ILD) lung fibroblasts. In summary, our study demonstrates that ciprofloxacin has antifibrotic actions in SSc dermal and lung fibroblasts via the downregulation of Dnmt1, the upregulation of Fli1 and induction of MMPI gene expression via an Erk1/2-dependent mechanism. Thus, our data suggest that ciprofloxacin may he an attractive therapy for SSc skin and lung fibrosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current study examined the role of PLD2 in the maintenance of mast cell structure. Phospholipase D (PLD) catalyzes hydrolysis of phosphatidylcholine to produce choline and phosphatidic acid (PA). PLD has two isoforms, PLD1 and PLD2, which vary in expression and localization depending on the cell type. The mast cell line RBL-2H3 was transfected to overexpress catalytically active (PLD2CA) and inactive (PLD2CI) forms of PLD2. The results of this study show that PLD2CI cells have a distinct star-shaped morphology, whereas PLD2CA and RBL-2H3 cells are spindle shaped. In PLD2CI cells, the Golgi complex was also disorganized with dilated cisternae, and more Golgi-associated vesicles were present as compared with the PLD2CA and RBL-2H3 cells. Treatment with exogenous PA led to the restoration of the wild-type Golgi complex phenotype in PLD2CI cells. Conversely, treatment of RBL-2H3 and PLD2CA cells with 1% 1-Butanol led to a disruption of the Golgi complex. The distribution of acidic compartments, including secretory granules and lysosomes, was also modified in PLD2CI cells, where they concentrated in the perinuclear region. These results suggest that the PA produced by PLD2 plays an important role in regulating cell morphology in mast cells. (J Histochem Cytochem 60:386-396, 2012)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemotherapeutic drug resistance is one of the major causes for treatment failure in high-risk neuroblastoma (NB), the most common extra cranial solid tumor in children. Poor prognosis is typically associated with MYCN amplification. Here, we utilized a loss-of-function kinome-wide RNA interference screen to identify genes that cause cisplatin sensitization. We identified fibroblast growth factor receptor 2 (FGFR2) as an important determinant of cisplatin resistance. Pharmacological inhibition of FGFR2 confirmed the importance of this kinase in NB chemoresistance. Silencing of FGFR2 sensitized NB cells to cisplatin-induced apoptosis, which was regulated by the downregulation of the anti-apoptotic proteins BCL2 and BCLX(L). Mechanistically, FGFR2 was shown to activate protein kinase C-δ to induce BCL2 expression. FGFR2, as well as the ligand fibroblast growth factor-2, were consistently expressed in primary NB and NB cell lines, indicating the presence of an autocrine loop. Expression analysis revealed that FGFR2 correlates with MYCN amplification and with advanced stage disease, demonstrating the clinical relevance of FGFR2 in NB. These findings suggest a novel role for FGFR2 in chemoresistance and provide a rational to combine pharmacological inhibitors against FGFR2 with chemotherapeutic agents for the treatment of NB.Oncogene advance online publication, 1 October 2012; doi:10.1038/onc.2012.416.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metformin is treatment of choice for the metabolic consequences seen in polycystic ovary syndrome for its insulin-sensitizing and androgen-lowering properties. Yet, the mechanism of action remains unclear. Two potential targets for metformin regulating steroid and glucose metabolism are AMP-activated protein kinase (AMPK) signaling and the complex I of the mitochondrial respiratory chain. Androgen biosynthesis requires steroid enzymes 17α-Hydroxylase/17,20 lyase (CYP17A1) and 3β-hydroxysteroid dehydrogenase type 2 (HSD3B2), which are overexpressed in ovarian cells of polycystic ovary syndrome women. Therefore, we aimed to understand how metformin modulates androgen production using NCI-H295R cells as an established model of steroidogenesis. Similar to in vivo situation, metformin inhibited androgen production in NCI cells by decreasing HSD3B2 expression and CYP17A1 and HSD3B2 activities. The effect of metformin on androgen production was dose dependent and subject to the presence of organic cation transporters, establishing an important role of organic cation transporters for metformin's action. Metformin did not affect AMPK, ERK1/2, or atypical protein kinase C signaling. By contrast, metformin inhibited complex I of the respiratory chain in mitochondria. Similar to metformin, direct inhibition of complex I by rotenone also inhibited HSD3B2 activity. In conclusion, metformin inhibits androgen production by mechanisms targeting HSD3B2 and CYP17-lyase. This regulation involves inhibition of mitochondrial complex I but appears to be independent of AMPK signaling.