993 resultados para Program Optimization
Resumo:
In this work, we explore simultaneous design and material selection by posing it as an optimization problem. The underlying principles for our approach are Ashby's material selection procedure and structural optimization. For the simplicity and ease of initial implementation of the general procedure, truss structures under static load are considered in this work in view of maximum stiffness, minimum weight/cost and safety against failure. Along the lines of Ashby's material indices, a new design index is derived for trusses. This helps in choosing the most suitable material for any design of a truss. Using this, both the design space and material database are searched simultaneously using optimization algorithms. The important feature of our approach is that the formulated optimization problem is continuous even though the material selection is an inherently discrete problem.
Resumo:
Topology optimization methods have been shown to have extensive application in the design of microsystems. However, their utility in practical situations is restricted to predominantly planar configurations due to the limitations of most microfabrication techniques in realizing structures with arbitrary topologies in the direction perpendicular to the substrate. This study addresses the problem of synthesizing optimal topologies in the out-of-plane direction while obeying the constraints imposed by surface micromachining. A new formulation that achieves this by defining a design space that implicitly obeys the manufacturing constraints with a continuous design parameterization is presented in this paper. This is in contrast to including manufacturing cost in the objective function or constraints. The resulting solutions of the new formulation obtained with gradient-based optimization directly provide the photolithographic mask layouts. Two examples that illustrate the approach for the case of stiff structures are included.
Resumo:
In this paper, we present a novel formulation for performing topology optimization of electrostatically actuated constrained elastic structures. We propose a new electrostatic-elastic formulation that uses the leaky capacitor model and material interpolation to define the material state at every point of a given design domain continuously between conductor and void states. The new formulation accurately captures the physical behavior when the material in between a conductor and a void is present during the iterative process of topology optimization. The method then uses the optimality criteria method to solve the optimization problem by iteratively pushing the state of the domain towards that of a conductor or a void in the appropriate regions. We present examples to illustrate the ability of the method in creating the stiffest structure under electrostatic force for different boundary conditions.
Resumo:
Swarm intelligence algorithms are applied for optimal control of flexible smart structures bonded with piezoelectric actuators and sensors. The optimal locations of actuators/sensors and feedback gain are obtained by maximizing the energy dissipated by the feedback control system. We provide a mathematical proof that this system is uncontrollable if the actuators and sensors are placed at the nodal points of the mode shapes. The optimal locations of actuators/sensors and feedback gain represent a constrained non-linear optimization problem. This problem is converted to an unconstrained optimization problem by using penalty functions. Two swarm intelligence algorithms, namely, Artificial bee colony (ABC) and glowworm swarm optimization (GSO) algorithms, are considered to obtain the optimal solution. In earlier published research, a cantilever beam with one and two collocated actuator(s)/sensor(s) was considered and the numerical results were obtained by using genetic algorithm and gradient based optimization methods. We consider the same problem and present the results obtained by using the swarm intelligence algorithms ABC and GSO. An extension of this cantilever beam problem with five collocated actuators/sensors is considered and the numerical results obtained by using the ABC and GSO algorithms are presented. The effect of increasing the number of design variables (locations of actuators and sensors and gain) on the optimization process is investigated. It is shown that the ABC and GSO algorithms are robust and are good choices for the optimization of smart structures.
Resumo:
In this paper, we consider robust joint designs of relay precoder and destination receive filters in a nonregenerative multiple-input multiple-output (MIMO) relay network. The network consists of multiple source-destination node pairs assisted by a MIMO-relay node. The channel state information (CSI) available at the relay node is assumed to be imperfect. We consider robust designs for two models of CSI error. The first model is a stochastic error (SE) model, where the probability distribution of the CSI error is Gaussian. This model is applicable when the imperfect CSI is mainly due to errors in channel estimation. For this model, we propose robust minimum sum mean square error (SMSE), MSE-balancing, and relay transmit power minimizing precoder designs. The next model for the CSI error is a norm-bounded error (NBE) model, where the CSI error can be specified by an uncertainty set. This model is applicable when the CSI error is dominated by quantization errors. In this case, we adopt a worst-case design approach. For this model, we propose a robust precoder design that minimizes total relay transmit power under constraints on MSEs at the destination nodes. We show that the proposed robust design problems can be reformulated as convex optimization problems that can be solved efficiently using interior-point methods. We demonstrate the robust performance of the proposed design through simulations.
Resumo:
In this work, using 3-D device simulation, we perform an extensive gate to source/drain underlap optimization for the recently proposed hybrid transistor, HFinFET, to show that the underlap lengths can be suitably tuned to improve the ON-OFF ratio as well as the subthreshold characteristics in an ultrashort channel n-type device without significantON performance degradation. We also show that the underlap knob can be tuned to mitigate the device quality degradation in presence of interface traps. The obtained results are shown to be promising when compared against ITRS 2009 performance projections, as well as published state of the art planar and nonplanar Silicon MOSFET data of comparable gate lengths using standard benchmarking techniques.
Resumo:
The standard Gibbs energy of formation of Rh203 at high temperature has been determined recently with high precision. The new data are significantly different from those given in thermodynamic compilations.Accurate values for enthalpy and entropy of formation at 298.15 K could not be evaluated from the new data,because reliable values for heat capacity of Rh2O3 were not available. In this article, a new measurement of the high temperature heat capacity of Rh2O3 using differential scanning calorimetry (DSC) is presented.The new values for heat capacity also differ significantly from those given in compilations. The information on heat capacity is coupled with standard Gibbs energy of formation to evaluate values for standard enthalpy and entropy of formation at 289.15 K using a multivariate analysis. The results suggest a major revision in thermodynamic data for Rh2O3. For example, it is recommended that the standard entropy of Rh203 at 298.15 K be changed from 106.27 J mol-' K-'given in the compilations of Barin and Knacke et al. to 75.69 J mol-' K". The recommended revision in the standard enthalpy of formation is from -355.64 kJ mol-'to -405.53 kJ mol".
Resumo:
This paper investigates a new Glowworm Swarm Optimization (GSO) clustering algorithm for hierarchical splitting and merging of automatic multi-spectral satellite image classification (land cover mapping problem). Amongst the multiple benefits and uses of remote sensing, one of the most important has been its use in solving the problem of land cover mapping. Image classification forms the core of the solution to the land cover mapping problem. No single classifier can prove to classify all the basic land cover classes of an urban region in a satisfactory manner. In unsupervised classification methods, the automatic generation of clusters to classify a huge database is not exploited to their full potential. The proposed methodology searches for the best possible number of clusters and its center using Glowworm Swarm Optimization (GSO). Using these clusters, we classify by merging based on parametric method (k-means technique). The performance of the proposed unsupervised classification technique is evaluated for Landsat 7 thematic mapper image. Results are evaluated in terms of the classification efficiency - individual, average and overall.
Resumo:
The technological world has attained a new dimension with the advent of miniaturization and a major breakthrough has evolved in the form of moems, technically more advanced than mems. This breakthrough has paved way for the scientists to research and conceive their innovation. This paper presents a mathematical analysis of the wave propagation along the non-uniform waveguide with refractive index varying along the z axis implemented on the cantilever beam of MZI based moem accelerometer. Secondly the studies on the wave bends with minimum power loss focusing on two main aspects of bend angle and curvature angle is also presented.
Resumo:
Based on a method proposed by Reddy and Shanmugasundaram, similar solutions have been obtained for the steady inviscid quasi‐one‐dimensional nonreacting flow in the supersonic nozzle of CO2–N2–H2O and CO2–N2–He gasdynamic laser systems. Instead of using the correlations of a nonsimilar function NS for pure N2 gas, as is done in previous publications, the NS correlations are computed here for the actual gas mixtures used in the gasdynamic lasers. Optimum small‐signal optical gain and the corresponding optimum values of the operating parameters like reservoir pressure and temperature and nozzle area ratio are computed using these correlations. The present results are compared with the previous results and the main differences are discussed.
Resumo:
We present a method for obtaining conjugate, conjoined shapes and tilings in the context of the design of structures using topology optimization. Optimal material distribution is achieved in topology optimization by setting up a selection field in the design domain to determine the presence/absence of material there. We generalize this approach in this paper by presenting a paradigm in which the material left out by the selection field is also utilised. We obtain conjugate shapes when the region chosen and the region left-out are solutions for two problems, each with a different functionality. On the other hand, if the left-out region is connected to the selected region in some pre-determined fashion for achieving a single functionality, then we get conjoined shapes. The utilization of the left-out material, gives the notion of material economy in both cases. Thus, material wastage is avoided in the practical realization of these designs using many manufacturing techniques. This is in contrast to the wastage of left-out material during manufacture of traditional topology-optimized designs. We illustrate such shapes in the case of stiff structures and compliant mechanisms. When such designs are suitably made on domains of the unit cell of a tiling, this leads to the formation of new tilings which are functionally useful. Such shapes are not only useful for their functionality and economy of material and manufacturing, but also for their aesthetic value.