901 resultados para Process Modeling, Collaboration, Distributed Modeling, Collaborative Technology


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Neuroimaging studies have consistently shown that working memory (WM) tasks engage a distributed neural network that primarily includes the dorsolateral prefrontal cortex, the parietal cortex, and the anterior cingulate cortex. The current challenge is to provide a mechanistic account of the changes observed in regional activity. To achieve this, we characterized neuroplastic responses in effective connectivity between these regions at increasing WM loads using dynamic causal modeling of functional magnetic resonance imaging data obtained from healthy individuals during a verbal n-back task. Our data demonstrate that increasing memory load was associated with (a) right-hemisphere dominance, (b) increasing forward (i.e., posterior to anterior) effective connectivity within the WM network, and (c) reduction in individual variability in WM network architecture resulting in the right-hemisphere forward model reaching an exceedance probability of 99% in the most demanding condition. Our results provide direct empirical support that task difficulty, in our case WM load, is a significant moderator of short-term plasticity, complementing existing theories of task-related reduction in variability in neural networks. Hum Brain Mapp, 2013. © 2013 Wiley Periodicals, Inc.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

It has been reported that high-speed communication network traffic exhibits both long-range dependence (LRD) and burstiness, which posed new challenges in network engineering. While many models have been studied in capturing the traffic LRD, they are not capable of capturing efficiently the traffic impulsiveness. It is desirable to develop a model that can capture both LRD and burstiness. In this letter, we propose a truncated a-stable LRD process model for this purpose, which can characterize both LRD and burstiness accurately. A procedure is developed further to estimate the model parameters from real traffic. Simulations demonstrate that our proposed model has a higher accuracy compared to existing models and is flexible in capturing the characteristics of high-speed network traffic. © 2012 Springer-Verlag GmbH.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

IEEE 802.15.4 standard has been recently developed for low power wireless personal area networks. It can find many applications for smart grid, such as data collection, monitoring and control functions. The performance of 802.15.4 networks has been widely studied in the literature. However the main focus has been on the modeling throughput performance with frame collisions. In this paper we propose an analytic model which can model the impact of frame collisions as well as frame corruptions due to channel bit errors. With this model the frame length can be carefully selected to improve system performance. The analytic model can also be used to study the 802.15.4 networks with interference from other co-located networks, such as IEEE 802.11 and Bluetooth networks. © 2011 Springer-Verlag.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A set of 38 epitopes and 183 non-epitopes, which bind to alleles of the HLA-A3 supertype, was subjected to a combination of comparative molecular similarity indices analysis (CoMSIA) and soft independent modeling of class analogy (SIMCA). During the process of T cell recognition, T cell receptors (TCR) interact with the central section of the bound nonamer peptide; thus only positions 4−8 were considered in the study. The derived model distinguished 82% of the epitopes and 73% of the non-epitopes after cross-validation in five groups. The overall preference from the model is for polar amino acids with high electron density and the ability to form hydrogen bonds. These so-called “aggressive” amino acids are flanked by small-sized residues, which enable such residues to protrude from the binding cleft and take an active role in TCR-mediated T cell recognition. Combinations of “aggressive” and “passive” amino acids in the middle part of epitopes constitute a putative TCR binding motif

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Determination of the so-called optical constants (complex refractive index N, which is usually a function of the wavelength, and physical thickness D) of thin films from experimental data is a typical inverse non-linear problem. It is still a challenge to the scientific community because of the complexity of the problem and its basic and technological significance in optics. Usually, solutions are looked for models with 3-10 parameters. Best estimates of these parameters are obtained by minimization procedures. Herein, we discuss the choice of orthogonal polynomials for the dispersion law of the thin film refractive index. We show the advantage of their use, compared to the Selmeier, Lorentz or Cauchy models.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Numerical modeling of cascade erbium-doped and holmium-doped fluoride fiber lasers is presented. Fiber lengths were optimized for cascade lasers that had fixed or free-running wavelengths using all known spectroscopic parameters. The performance of the cascade laser was tested against dopant concentration, energy transfer process, heat generation, output coupling, and pump schemes. The results suggest that the slope efficiencies and thresholds for both transitions increase with increasing Ho3+ or Er3+ concentration with the slope efficiency stabilizing after 1 mol% rare earth doping. The heat generation in the Ho3+-based system is lower compared to the Er 3+-based system at low dopant concentration as a result of the lower rates of multiphonon relaxation. Decreasing the output coupling for the upper (∼3 μm) transition decreases the threshold of the lower transition and the upper transition benefits from decreasing the output coupling for the lower transition for both cascade systems. The highest slope efficiency was achieved under counter-propagating pump conditions. Saturation of the output power occurs at comparatively higher pump power with dilute Er3+ doping compared with heavier doping. Overall, we show that the cascade Ho3+ -doped fluoride laser is the best candidate for high power output because of its higher slope efficiency and lower temperature excursion of the core and no saturation of the output. © 2013 IEEE.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

From a Service-Dominant Logic (S-DL) perspective, employees constitute operant resources that firms can draw to enhance the outcomes of innovation efforts. While research acknowledges that frontline employees (FLEs) constitute, through service encounters, a key interface for the transfer of valuable external knowledge into the firm, the range of potential benefits derived from FLE-driven innovation deserves more investigation. Using a sample of knowledge intensive business services firms (KIBS), this study examines how the collaboration with FLEs along the new service development (NSD) process, namely FLE co-creation, impacts on service innovation performance following two routes of different effects. Partial least squares structural equation modeling (PLS-SEM) results indicate that FLE co-creation benefits the NS success among FLEs and firm’s customers, the constituents of the resources route. FLE co-creation also has a positive effect on the NSD speed, which in turn enhances the NS quality. NSD speed and NS quality integrate the operational route, which proves to be the most effective path to impact the NS market performance. Accordingly, KIBS managers must value their FLEs as essential partners to achieve successful innovation from an internal and external perspective, and develop the appropriate mechanisms to guarantee their effective involvement along the NSD process.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

There have been multifarious approaches in building expert knowledge in medical or engineering field through expert system, case-based reasoning, model-based reasoning and also a large-scale knowledge-based system. The intriguing factors with these approaches are mainly the choices of reasoning mechanism, ontology, knowledge representation, elicitation and modeling. In our study, we argue that the knowledge construction through hypermedia-based community channel is an effective approach in constructing expert’s knowledge. We define that the knowledge can be represented as in the simplest form such as stories to the most complex ones such as on-the-job type of experiences. The current approaches of encoding experiences require expert’s knowledge to be acquired and represented in rules, cases or causal model. We differentiate the two types of knowledge which are the content knowledge and socially-derivable knowledge. The latter is described as knowledge that is earned through social interaction. Intelligent Conversational Channel is the system that supports the building and sharing on this type of knowledge.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Mathematical modeling may have different purposes in chemical and biochemical engineering sciences. One of them is to confirm or to reject kinetic models for certain processes, or to evaluate the importance of some transport phenomena on the net chemical or biochemical reaction rate. In the present paper different microbial processes are considered and modeled for evaluation of kinetic constants for batch and continuous processes accomplished by free and immobilized microbial cells. The practical examples are from the field of wastewater treatment and biosynthesis of products, like enzymes, lactic acid, gluconic acid, etc. By the aid of mathematical modeling the kinetics and the type of inhibition are specified for microbial wastewater denitrification and biodegradation of halogenated hydrocarbons. The importance of free and immobilized cells and their separate contribution to the overall microbial process is also evaluated for some fermentation processes: gluconic acid production, dichloroethane biodegradation, lactic acid fermentation and monochloroacetic acid biodegradation.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In an attempt to answer the need of wider accessibility and popularization of the treasury of Bulgarian folklore, a team from the Institute of Mathematics and Informatics at the Bulgarian Academy of Sciences has planned to develop the Bulgarian folklore artery within the national project ―Knowledge Technologies for Creation of Digital Presentation and Significant Repositories of Folklore Heritage‖. This paper presents the process of business modeling of the application architecture of the Bulgarian folklore artery, which aids requirements analysis, application design and its software implementation. The folklore domain process model is made in the context of the target social applications—e-learning, virtual expositions of folklore artifacts, research, news, cultural/ethno-tourism, etc. The basic processes are analyzed and modeled and some inferences are made for the use cases and requirements specification of the Bulgarian folklore artery application. As a conclusion the application architecture of the Bulgarian folklore artery is presented.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

IEEE 802.11 standard is the dominant technology for wireless local area networks (WLANs). In the last two decades, the Distributed coordination function (DCF) of IEEE 802.11 standard has become the one of the most important media access control (MAC) protocols for mobile ad hoc networks (MANETs). The DCF protocol can also be combined with cognitive radio, thus the IEEE 802.11 cognitive radio ad hoc networks (CRAHNs) come into being. There were several literatures which focus on the modeling of IEEE 802.11 CRAHNs, however, there is still no thorough and scalable analytical models for IEEE 802.11 CRAHNs whose cognitive node (i.e., secondary user, SU) has spectrum sensing and possible channel silence process before the MAC contention process. This paper develops a unified analytical model for IEEE 802.11 CRAHNs for comprehensive MAC layer queuing analysis. In the proposed model, the SUs are modeled by a hyper generalized 2D Markov chain model with an M/G/1/K model while the primary users (PUs) are modeled by a generalized 2D Markov chain and an M/G/1/K model. The performance evaluation results show that the quality-of-service (QoS) of both the PUs and SUs can be statistically guaranteed with the suitable settings of duration of channel sensing and silence phase in the case of under loading.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A dolgozatban a hitelderivatívák intenzitásalapú modellezésének néhány kérdését vizsgáljuk meg. Megmutatjuk, hogy alkalmas mértékcserével nemcsak a duplán sztochasztikus folyamatok, hanem tetszőleges intenzitással rendelkező pontfolyamat esetén is kiszámolható az összetett kár- és csődfolyamat eloszlásának Laplace-transzformáltja. _____ The paper addresses questions concerning the use of intensity based modeling in the pricing of credit derivatives. As the specification of the distribution of the lossprocess is a non-trivial exercise, the well-know technique for this task utilizes the inversion of the Laplace-transform. A popular choice for the model is the class of doubly stochastic processes given that their Laplace-transforms can be determined easily. Unfortunately these processes lack several key features supported by the empirical observations, e.g. they cannot replicate the self-exciting nature of defaults. The aim of the paper is to show that by using an appropriate change of measure the Laplace-transform can be calculated not only for a doubly stochastic process, but for an arbitrary point process with intensity as well. To support the application of the technique, we investigate the e®ect of the change of measure on the stochastic nature of the underlying process.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Three new technologies have been brought together to develop a miniaturized radiation monitoring system. The research involved (1) Investigation a new HgI$\sb2$ detector. (2) VHDL modeling. (3) FPGA implementation. (4) In-circuit Verification. The packages used included an EG&G's crystal(HgI$\sb2$) manufactured at zero gravity, the Viewlogic's VHDL and Synthesis, Xilinx's technology library, its FPGA implementation tool, and a high density device (XC4003A). The results show: (1) Reduced cycle-time between Design and Hardware implementation; (2) Unlimited Re-design and implementation using the static RAM technology; (3) Customer based design, verification, and system construction; (4) Well suited for intelligent systems. These advantages excelled conventional chip design technologies and methods in easiness, short cycle time, and price in medium sized VLSI applications. It is also expected that the density of these devices will improve radically in the near future. ^

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Clusters are aggregations of atoms or molecules, generally intermediate in size between individual atoms and aggregates that are large enough to be called bulk matter. Clusters can also be called nanoparticles, because their size is on the order of nanometers or tens of nanometers. A new field has begun to take shape called nanostructured materials which takes advantage of these atom clusters. The ultra-small size of building blocks leads to dramatically different properties and it is anticipated that such atomically engineered materials will be able to be tailored to perform as no previous material could.^ The idea of ionized cluster beam (ICB) thin film deposition technique was first proposed by Takagi in 1972. It was based upon using a supersonic jet source to produce, ionize and accelerate beams of atomic clusters onto substrates in a vacuum environment. Conditions for formation of cluster beams suitable for thin film deposition have only recently been established following twenty years of effort. Zinc clusters over 1,000 atoms in average size have been synthesized both in our lab and that of Gspann. More recently, other methods of synthesizing clusters and nanoparticles, using different types of cluster sources, have come under development.^ In this work, we studied different aspects of nanoparticle beams. The work includes refinement of a model of the cluster formation mechanism, development of a new real-time, in situ cluster size measurement method, and study of the use of ICB in the fabrication of semiconductor devices.^ The formation process of the vaporized-metal cluster beam was simulated and investigated using classical nucleation theory and one dimensional gas flow equations. Zinc cluster sizes predicted at the nozzle exit are in good quantitative agreement with experimental results in our laboratory.^ A novel in situ real-time mass, energy and velocity measurement apparatus has been designed, built and tested. This small size time-of-flight mass spectrometer is suitable to be used in our cluster deposition systems and does not suffer from problems related to other methods of cluster size measurement like: requirement for specialized ionizing lasers, inductive electrical or electromagnetic coupling, dependency on the assumption of homogeneous nucleation, limits on the size measurement and non real-time capability. Measured ion energies using the electrostatic energy analyzer are in good accordance with values obtained from computer simulation. The velocity (v) is measured by pulsing the cluster beam and measuring the time of delay between the pulse and analyzer output current. The mass of a particle is calculated from m = (2E/v$\sp2).$ The error in the measured value of background gas mass is on the order of 28% of the mass of one N$\sb2$ molecule which is negligible for the measurement of large size clusters. This resolution in cluster size measurement is very acceptable for our purposes.^ Selective area deposition onto conducting patterns overlying insulating substrates was demonstrated using intense, fully-ionized cluster beams. Parameters influencing the selectivity are ion energy, repelling voltage, the ratio of the conductor to insulator dimension, and substrate thickness. ^