898 resultados para Procesamiento Imágenes Cerebrales
Resumo:
La rápida evolución experimentada en los últimos años por las tecnologías de Internet ha estimulado la proliferación de recursos software en varias disciplinas científicas, especialmente en bioinformática. En la mayoría de los casos, la tendencia actual es publicar dichos recursos como servicios accesibles libremente a través de Internet, utilizando tecnologías y patrones de diseño definidos para la implementación de Arquitecturas Orientadas a Servicios (SOA). La combinación simultánea de múltiples servicios dentro de un mismo flujo de trabajo abre la posibilidad de crear aplicaciones potencialmente más útiles y complejas. La integración de dichos servicios plantea grandes desafíos, tanto desde un punto de vista teórico como práctico, como por ejemplo, la localización y acceso a los recursos disponibles o la coordinación entre ellos. En esta tesis doctoral se aborda el problema de la identificación, localización, clasificación y acceso a los recursos informáticos disponibles en Internet. Con este fin, se ha definido un modelo genérico para la construcción de índices de recursos software con información extraída automáticamente de artículos de la literatura científica especializada en un área. Este modelo consta de seis fases que abarcan desde la selección de las fuentes de datos hasta el acceso a los índices creados, pasando por la identificación, extracción, clasificación y “curación” de la información relativa a los recursos. Para verificar la viabilidad, idoneidad y eficiencia del modelo propuesto, éste ha sido evaluado en dos dominios científicos diferentes—la BioInformática y la Informática Médica—dando lugar a dos índices de recursos denominados BioInformatics Resource Inventory (BIRI) y electronic-Medical Informatics Repository of Resources(e-MIR2) respectivamente. Los resultados obtenidos de estas aplicaciones son presentados a lo largo de la presente tesis doctoral y han dado lugar a varias publicaciones científicas en diferentes revistas JCR y congresos internacionales. El impacto potencial y la utilidad de esta tesis doctoral podrían resultar muy importantes teniendo en cuenta que, gracias a la generalidad del modelo propuesto, éste podría ser aplicado en cualquier disciplina científica. Algunas de las líneas de investigación futuras más relevantes derivadas de este trabajo son esbozadas al final en el último capítulo de este libro. ABSTRACT The rapid evolution experimented in the last years by the Internet technologies has stimulated the proliferation of heterogeneous software resources in most scientific disciplines, especially in the bioinformatics area. In most cases, current trends aim to publish those resources as services freely available over the Internet, using technologies and design patterns defined for the implementation of Service-Oriented Architectures (SOA). Simultaneous combination of various services into the same workflow opens the opportunity of creating more complex and useful applications. Integration of services raises great challenges, both from a theoretical to a practical point of view such as, for instance, the location and access to the available resources or the orchestration among them. This PhD thesis deals with the problem of identification, location, classification and access to informatics resources available over the Internet. On this regard, a general model has been defined for building indexes of software resources, with information extracted automatically from scientific articles from the literature specialized in the area. Such model consists of six phases ranging from the selection of data sources to the access to the indexes created, covering the identification, extraction, classification and curation of the information related to the software resources. To verify the viability, feasibility and efficiency of the proposed model, it has been evaluated in two different scientific domains—Bioinformatics and Medical Informatics—producing two resources indexes named BioInformatics Resources Inventory (BIRI) and electronic-Medical Informatics Repository of Resources (e-MIR2) respectively. The results and evaluation of those systems are presented along this PhD thesis, and they have produced different scientific publications in several JCR journals and international conferences. The potential impact and utility of this PhD thesis could be of great relevance considering that, thanks to the generality of the proposed model, it could be successfully extended to any scientific discipline. Some of the most relevant future research lines derived from this work are outlined at the end of this book.
Resumo:
Los alimentos son sistemas complejos, formados por diversas estructuras a diferentes escalas: macroscópica y microscópica. Muchas propiedades de los alimentos, que son importantes para su procesamiento, calidad y tratamiento postcosecha, están relacionados con su microestructura. La presente tesis doctoral propone una metodología completa para la determinación de la estructura de alimentos desde un punto de vista multi-escala, basándose en métodos de Resonancia Magnética Nuclear (NMR). Las técnicas de NMR son no invasivas y no destructivas y permiten el estudio tanto de macro- como de microestructura. Se han utilizado distintos procedimientos de NMR dependiendo del nivel que se desea estudiar. Para el nivel macroestructural, la Imagen de Resonancia Magnética (MRI) ha resultado ser muy útil para la caracterización de alimentos. Para el estudio microestructural, la MRI requiere altos tiempos de adquisición, lo que hace muy difícil la transferencia de esta técnica a aplicaciones en industria. Por tanto, la optimización de procedimientos de NMR basados en secuencias relaxometría 2D T1/T2 ha resultado ser una estrategia primordial en esta tesis. Estos protocolos de NMR se han implementado satisfactoriamente por primera vez en alto campo magnético. Se ha caracterizado la microestructura de productos alimentarios enteros por primera vez utilizando este tipo de protocolos. Como muestras, se han utilizado dos tipos de productos: modelos de alimentos y alimentos reales (manzanas). Además, como primer paso para su posterior implementación en la industria agroalimentaria, se ha mejorado una línea transportadora, especialmente diseñada para trabajar bajo condiciones de NMR en trabajos anteriores del grupo LPF-TAGRALIA. Se han estudiado y seleccionado las secuencias más rápidas y óptimas para la detección de dos tipos de desórdenes internos en manzanas: vitrescencia y roturas internas. La corrección de las imágenes en movimiento se realiza en tiempo real. Asimismo, se han utilizado protocolos de visión artificial para la clasificación automática de manzanas potencialmente afectadas por vitrescencia. El presente documento está dividido en diferentes capítulos: el Capítulo 2 explica los antecedentes de la presente tesis y el marco del proyecto en el que se ha desarrollado. El Capítulo 3 recoge el estado del arte. El Capítulo 4 establece los objetivos de esta tesis doctoral. Los resultados se dividen en cinco sub-secciones (dentro del Capítulo 5) que corresponden con los trabajos publicados bien en revistas revisadas por pares, bien en congresos internacionales o bien como capítulos de libros revisados por pares. La Sección 5.1. es un estudio del desarrollo de la vitrescencia en manzanas mediante MRI y lo relaciona con la posición de la fruta dentro de la copa del árbol. La Sección 5.2 presenta un trabajo sobre macro- y microestructura en modelos de alimentos. La Sección 5.3 es un artículo en revisión en una revista revisada por pares, en el que se hace un estudio microestrcutural no destructivo mediante relaxometría 2D T1/T2. la Sección 5.4, hace una comparación entre manzanas afectadas por vitrescencia mediante dos técnicas: tomografía de rayos X e MRI, en manzana. Por último, en la Sección 5.5 se muestra un trabajo en el que se hace un estudio de secuencias de MRI en línea para la evaluación de calidad interna en manzanas. Los siguientes capítulos ofrecen una discusión y conclusiones (Capítulo 6 y 7 respectivamente) de todos los capítulos de esta tesis doctoral. Finalmente, se han añadido tres apéndices: el primero con una introducción de los principios básicos de resonancia magnética nuclear (NMR) y en los otros dos, se presentan sendos estudios sobre el efecto de las fibras en la rehidratación de cereales de desayuno extrusionados, mediante diversas técnicas. Ambos trabajos se presentaron en un congreso internacional. Los resultados más relevantes de la presente tesis doctoral, se pueden dividir en tres grandes bloques: resultados sobre macroestructura, resultados sobre microestructura y resultados sobre MRI en línea. Resultados sobre macroestructura: - La imagen de resonancia magnética (MRI) se aplicó satisfactoriamente para la caracterización de macroestructura. En particular, la reconstrucción 3D de imágenes de resonancia magnética permitió identificar y caracterizar dos tipos distintos de vitrescencia en manzanas: central y radial, que se caracterizan por el porcentaje de daño y la conectividad (número de Euler). - La MRI proveía un mejor contraste para manzanas afectadas por vitrescencia que las imágenes de tomografía de rayos X (X-Ray CT), como se pudo verificar en muestras idénticas de manzana. Además, el tiempo de adquisición de la tomografía de rayos X fue alrededor de 12 veces mayor (25 minutos) que la adquisición de las imágenes de resonancia magnética (2 minutos 2 segundos). Resultados sobre microestructura: - Para el estudio de microestructura (nivel subcelular) se utilizaron con éxito secuencias de relaxometría 2D T1/T2. Estas secuencias se usaron por primera vez en alto campo y sobre piezas de alimento completo, convirtiéndose en una forma no destructiva de llevar a cabo estudios de microestructura. - El uso de MRI junto con relaxometría 2D T1/T2 permite realizar estudios multiescala en alimentos de forma no destructiva. Resultados sobre MRI en línea: - El uso de imagen de resonancia magnética en línea fue factible para la identificación de dos tipos de desórdenes internos en manzanas: vitrescencia y podredumbre interna. Las secuencias de imagen tipo FLASH resultaron adecuadas para la identificación en línea de vitrescencia en manzanas. Se realizó sin selección de corte, debido a que la vitrescencia puede desarrollarse en cualquier punto del volumen de la manzana. Se consiguió reducir el tiempo de adquisición, de modo que se llegaron a adquirir 1.3 frutos por segundos (758 ms por fruto). Las secuencias de imagen tipo UFLARE fueron adecuadas para la detección en línea de la podredumbre interna en manzanas. En este caso, se utilizó selección de corte, ya que se trata de un desorden que se suele localizar en la parte central del volumen de la manzana. Se consiguió reducir el tiempo de adquisicón hasta 0.67 frutos por segundo (1475 ms por fruto). En ambos casos (FLASH y UFLARE) fueron necesarios algoritmos para la corrección del movimiento de las imágenes en tiempo real. ABSTRACT Food is a complex system formed by several structures at different scales: macroscopic and microscopic. Many properties of foods that are relevant to process engineering or quality and postharvest treatments are related to their microstructure. This Ph.D Thesis proposes a complete methodology for food structure determination, in a multiscale way, based on the Nuclear Magnetic Resonance (NMR) phenomenon since NMR techniques are non-invasive and non-destructive, and allow both, macro- and micro-structure study. Different NMR procedures are used depending on the structure level under study. For the macrostructure level, Magnetic Resonance Imaging (MRI) revealed its usefulness for food characterization. For microstructure insight, MRI required high acquisition times, which is a hindrance for transference to industry applications. Therefore, optimization of NMR procedures based on T1/T2 relaxometry sequences was a key strategy in this Thesis. These NMR relaxometry protocols, are successfully implemented in high magnetic field. Microstructure of entire food products have been characterized for the first time using these protocols. Two different types of food products have been studied: food models and actual food (apples). Furthermore, as a first step for the food industry implementation, a grading line system, specially designed for working under NMR conditions in previous works of the LPF-TAGRALIA group, is improved. The study and selection of the most suitable rapid sequence to detect two different types of disorders in apples (watercore and internal breakdown) is performed and the real time image motion correction is applied. In addition, artificial vision protocols for the automatic classification of apples potentially affected by watercore are applied. This document is divided into seven different chapters: Chapter 2 explains the thesis background and the framework of the project in which it has been worked. Chapter 3 comprises the state of the art. Chapter 4 establishes de objectives of this Ph.D thesis. The results are divided into five different sections (in Chapter 5) that correspond to published peered reviewed works. Section 5.1 assesses the watercore development in apples with MRI and studies the effect of fruit location in the canopy. Section 5.2 is an MRI and 2D relaxometry study for macro- and microstructure assessment in food models. Section 5.3 is a non-destructive microstructural study using 2D T1/T2 relaxometry on watercore affected apples. Section 5.4 makes a comparison of X-ray CT and MRI on watercore disorder of different apple cultivars. Section 5.5, that is a study of online MRI sequences for the evaluation of apple internal quality. The subsequent chapters offer a general discussion and conclusions (Chapter 6 and Chapter 7 respectively) of all the works performed in the frame of this Ph.D thesis (two peer reviewed journals, one book chapter and one international congress).Finally, three appendices are included in which an introduction to NMR principles is offered and two published proceedings regarding the effect of fiber on the rehydration of extruded breakfast cereal are displayed. The most relevant results can be summarized into three sections: results on macrostructure, results on microstructure and results on on-line MRI. Results on macrostructure: - MRI was successfully used for macrostructure characterization. Indeed, 3D reconstruction of MRI in apples allows to identify two different types of watercore (radial and block), which are characterized by the percentage of damage and the connectivity (Euler number). - MRI provides better contrast for watercore than X-Ray CT as verified on identical samples. Furthermore, X-Ray CT images acquisition time was around 12 times higher (25 minutes) than MRI acquisition time (2 minutes 2 seconds). Results on microstructure: - 2D T1/T2 relaxometry were successfully applied for microstructure (subcellular level) characterization. 2D T1/T2 relaxometry sequences have been applied for the first time on high field for entire food pieces, being a non-destructive way to achieve microstructure study. - The use of MRI together with 2D T1/T2 relaxometry sequences allows a non-destructive multiscale study of food. Results on on-line MRI: - The use of on-line MRI was successful for the identification of two different internal disorders in apples: watercore and internal breakdown. FLASH imaging was a suitable technique for the on-line detection of watercore disorder in apples, with no slice selection, since watercore is a physiological disorder that may be developed anywhere in the apple volume. 1.3 fruits were imaged per second (768 ms per fruit). UFLARE imaging is a suitable sequence for the on-line detection of internal breakdown disorder in apples. Slice selection was used, as internal breakdown is usually located in the central slice of the apple volume. 0.67 fruits were imaged per second (1475 ms per fruit). In both cases (FLASH and UFLARE) motion correction was performed in real time, during the acquisition of the images.
Resumo:
Desde hace tiempo ha habido mucho interés en la automatización de todo tipo de tareas en las que la intervención humana es esencial para que sean completadas con éxito. Esto es de especial interés si además se ciertas tareas que pueden ser perfectamente reproducibles y, o bien requieren mucha formación, o bien consumen mucho tiempo. Este proyecto está dirigido a la búsqueda de métodos para automatizar la anotación de imágenes médicas. En concreto, se centra en el apartado de delimitación de las regiones de interés (ROIs) en imágenes de tipo PET siendo éstas usadas con frecuencia junto con las imágenes de tipo CT en el campo de oncología para delinear volúmenes afectados por cáncer. Se pretende con esto ayudar a los hospitales a organizar y estructurar las imágenes de sus pacientes y relacionarlas con las notas clínicas. Esto es lo que llamaremos el proceso de anotación de imágenes y la integración con la anotación de notas clínicas respectivamente. En este documento nos vamos a centrar en describir cuáles eran los objetivos iniciales, los pasos dados para su consecución y las dificultades encontradas durante el proceso. De todas las técnicas existentes en la literatura, se han elegido 4 técnicas de segmentación, 2 de ellas probadas en pacientes reales y las otras 2 probadas solo en phantoms según la literatura. En nuestro caso, las pruebas, se han realizado en imágenes PET de 6 pacientes reales diagnosticados de cáncer. Los resultados han sido analizados y presentados. ---ABSTRACT---For a long period of time, there has been an increasing interest in automation of tasks where human intervention is needed in order to succeed. This interest is even greater if those tasks must be solved by qualifed specialists in the area and the task is reproducible or if the task is too time consuming. The main objective of this project is to find methods which can help to automate medical image annotation processes. In our specific case, we are willing to delineate regions of interest (ROIs) in PET images which are frequently used simultaneaously ith CT images in oncology to determine those volumes that are afected by cancer. With this process we want to help hospitals organize and have from their patient studies and to relate these images to the corpus annotations. We may call this the image annotation process and the integration with the corpus annotation respectively. In this document we are going to concentrate in the description of the initial objectives, the steps we had to go through and the di�culties we had to face during this process. From all existing techniques in the literature, 4 segmentation techniques have been chosen, 2 of them were tested in real patients and the other 2 were tested using phantoms according to the literature. In our case, the tests have been done using PET images from 6 real patients diagnosed with cancer. The results have been analyzed and presented.
Resumo:
El objetivo del presente Proyecto Fin de Carrera es la elaboración de cartografía base de la zona Rivas - Vaciamadrid, situada al noreste de Madrid, a partir de imágenes de alta resolución espacial pancromáticas y en color obtenidas mediante teledetección aerotransportada de la zona. Se pretende poder facilitar el reconocimiento de la morfología y la geología natural de la zona desde la clasificación de la cobertura del suelo. La zona de trabajo actualmente está construida y en el momento del registro de datos se encontraba en estado natural. La finalidad consiste en proporcionar una información temática que permita llevar a cabo estudios de análisis de cobertura y de cambios. Se trata de una imagen en alta resolución por un sensor aerotransportado, ATM (Airbone Thematic Mapper), de naturaleza pasiva. La imagen fue registrada en el año 1997 y contiene información clasificada en 11 bandas del espectro electromagnético. El proyecto consta de dos partes: 1. Confección de cartografía base: o Documentación previa de los aspectos físicos globales (geomorfológicos, geológicos, hidrológicos) del área de estudio, a través de los documentos que puedan existir en internet con acceso libre. o Obtención de cartografía a escala 1/25000. 2. Confección de la cartografía temática: o Selección de la zona de estudio dentro de la imagen registrada y tratada en la primera parte del proyecto. o Clasificación de la imagen para análisis y definición de la cobertura del suelo. o Edición de la cartografía temática. El resultado del proyecto es una cartografía base, a escala 1/25000, que contiene información descriptiva sobre la distinta cobertura de suelo de la zona a tratar, antes de que ésta fuera construida y/o modificada artificialmente, y cartografía temática de la zona de interés.
Resumo:
Se comenzó el trabajo recabando información sobre los distintos enfoques que se le había dado a la anotación a lo largo del tiempo, desde anotación de imágenes a mano, pasando por anotación de imágenes utilizando características de bajo nivel, como color y textura, hasta la anotación automática. Tras entrar en materia, se procedió a estudiar artículos relativos a los diferentes algoritmos utilizados para la anotación automática de imágenes. Dado que la anotación automática es un campo bastante abierto, hay un gran numero de enfoques. Teniendo las características de las imágenes en particular en las que se iba a centrar el proyecto, se fueron descartando los poco idoneos, bien por un coste computacional elevado, o porque estaba centrado en un tipo diferente de imágenes, entre otras cosas. Finalmente, se encontró un algoritmo basado en formas (Active Shape Model) que se consideró que podría funcionar adecuadamente. Básicamente, los diferentes objetos de la imagen son identicados a partir de un contorno base generado a partir de imágenes de muestra, siendo modicado automáticamente para cubrir la zona deseada. Dado que las imágenes usadas son todas muy similares en composición, se cree que puede funcionar bien. Se partió de una implementación del algoritmo programada en MATLAB. Para empezar, se obtuvieron una serie de radiografías del tórax ya anotadas. Las imágenes contenían datos de contorno para ambos pulmones, las dos clavículas y el corazón. El primer paso fue la creación de una serie de scripts en MATLAB que permitieran: - Leer y transformar las imágenes recibidas en RAW, para adaptarlas al tamaño y la posición de los contornos anotados - Leer los archivos de texto con los datos de los puntos del contorno y transformarlos en variables de MATLAB - Unir la imagen transformada con los puntos y guardarla en un formato que la implementación del algoritmo entendiera. Tras conseguir los ficheros necesarios, se procedió a crear un modelo para cada órgano utilizando para el entrenamiento una pequeña parte de las imágenes. El modelo obtenido se probó con varias imágenes de las restantes. Sin embargo, se encontro bastante variación dependiendo de la imagen utilizada y el órgano detectado. ---ABSTRACT---The project was started by procuring information about the diferent approaches to image annotation over time, from manual image anotation to automatic annotation. The next step was to study several articles about the diferent algorithms used for automatic image annotation. Given that automatic annotation is an open field, there is a great number of approaches. Taking into account the features of the images that would be used, the less suitable algorithms were rejected. Eventually, a shape-based algorithm (Active Shape Model) was found. Basically, the diferent objects in the image are identified from a base contour, which is generated from training images. Then this contour is automatically modified to cover the desired area. Given that all the images that would be used are similar in object placement, the algorithm would probably work nicely. The work started from a MATLAB implementation of the algorithm. To begin with, a set of chest radiographs already annotated were obtained. These images came with contour data for both lungs, both clavicles and the heart. The first step was the creation of a series of MATLAB scripts to join the RAW images with the annotation data and transform them into a format that the algorithm could read. After obtaining the necessary files, a model for each organ was created using part of the images for training. The trained model was tested on several of the reimaining images. However, there was much variation in the results from one image to another. Generally, lungs were detected pretty accurately, whereas clavicles and the heart gave more problems. To improve the method, a new model was trained using half of the available images. With this model, a significant inprovement of the results can be seen.
Resumo:
El análisis de imágenes hiperespectrales permite obtener información con una gran resolución espectral: cientos de bandas repartidas desde el espectro infrarrojo hasta el ultravioleta. El uso de dichas imágenes está teniendo un gran impacto en el campo de la medicina y, en concreto, destaca su utilización en la detección de distintos tipos de cáncer. Dentro de este campo, uno de los principales problemas que existen actualmente es el análisis de dichas imágenes en tiempo real ya que, debido al gran volumen de datos que componen estas imágenes, la capacidad de cómputo requerida es muy elevada. Una de las principales líneas de investigación acerca de la reducción de dicho tiempo de procesado se basa en la idea de repartir su análisis en diversos núcleos trabajando en paralelo. En relación a esta línea de investigación, en el presente trabajo se desarrolla una librería para el lenguaje RVC – CAL – lenguaje que está especialmente pensado para aplicaciones multimedia y que permite realizar la paralelización de una manera intuitiva – donde se recogen las funciones necesarias para implementar dos de las cuatro fases propias del procesado espectral: reducción dimensional y extracción de endmembers. Cabe mencionar que este trabajo se complementa con el realizado por Raquel Lazcano en su Proyecto Fin de Grado, donde se desarrollan las funciones necesarias para completar las otras dos fases necesarias en la cadena de desmezclado. En concreto, este trabajo se encuentra dividido en varias partes. La primera de ellas expone razonadamente los motivos que han llevado a comenzar este Proyecto Fin de Grado y los objetivos que se pretenden conseguir con él. Tras esto, se hace un amplio estudio del estado del arte actual y, en él, se explican tanto las imágenes hiperespectrales como los medios y las plataformas que servirán para realizar la división en núcleos y detectar las distintas problemáticas con las que nos podamos encontrar al realizar dicha división. Una vez expuesta la base teórica, nos centraremos en la explicación del método seguido para componer la cadena de desmezclado y generar la librería; un punto importante en este apartado es la utilización de librerías especializadas en operaciones matriciales complejas, implementadas en C++. Tras explicar el método utilizado, se exponen los resultados obtenidos primero por etapas y, posteriormente, con la cadena de procesado completa, implementada en uno o varios núcleos. Por último, se aportan una serie de conclusiones obtenidas tras analizar los distintos algoritmos en cuanto a bondad de resultados, tiempos de procesado y consumo de recursos y se proponen una serie de posibles líneas de actuación futuras relacionadas con dichos resultados. ABSTRACT. Hyperspectral imaging allows us to collect high resolution spectral information: hundred of bands covering from infrared to ultraviolet spectrum. These images have had strong repercussions in the medical field; in particular, we must highlight its use in cancer detection. In this field, the main problem we have to deal with is the real time analysis, because these images have a great data volume and they require a high computational power. One of the main research lines that deals with this problem is related with the analysis of these images using several cores working at the same time. According to this investigation line, this document describes the development of a RVC – CAL library – this language has been widely used for working with multimedia applications and allows an optimized system parallelization –, which joins all the functions needed to implement two of the four stages of the hyperspectral imaging processing chain: dimensionality reduction and endmember extraction. This research is complemented with the research conducted by Raquel Lazcano in her Diploma Project, where she studies the other two stages of the processing chain. The document is divided in several chapters. The first of them introduces the motivation of the Diploma Project and the main objectives to achieve. After that, we study the state of the art of some technologies related with this work, like hyperspectral images and the software and hardware that we will use to parallelize the system and to analyze its performance. Once we have exposed the theoretical bases, we will explain the followed methodology to compose the processing chain and to generate the library; one of the most important issues in this chapter is the use of some C++ libraries specialized in complex matrix operations. At this point, we will expose the results obtained in the individual stage analysis and then, the results of the full processing chain implemented in one or several cores. Finally, we will extract some conclusions related with algorithm behavior, time processing and system performance. In the same way, we propose some future research lines according to the results obtained in this document
Resumo:
En este proyecto se han analizado distintas imágenes de fragmentos de rocas de distintas granulometrías correspondientes a una serie de voladuras de una misma cantera. Cada una de las voladuras se componen de 20 imágenes. A posteriori utilizando el programa Split Desktop en su versión 3.1, se delimitaron los fragmentos de roca de los que está compuesta la imagen, obteniéndose posteriormente la curva granulométrica correspondiente a dicha imagen. Una vez se calculan las curvas granulométricas correspondientes a cada imagen, se calcula la curva media de todas ellas, pudiéndose considerar por tanto la curva media de cada voladura. Se han utilizado las distintas soluciones del software, manual, online y automático, para realizar los análisis de dichas imágenes y a posteriori comparar sus resultados. Dichos resultados se muestran a través de una serie de gráficos y tablas que se explican con detalle para la comprensión del estudio. De dichos resultados es posible afirmar que, el tratamiento de imágenes realizado de manera online y automático por Split, desemboca en el mismo resultado, al no haber una diferencia estadística significativa. Por el contrario, el sistema manual es diferente de los otros dos, no pudiéndose afirmar cual es mejor de los dos. El manual depende del operario que trabaje las imágenes y el online de los ajustes realizados y por tanto, ambos tienen ciertas incertidumbres difíciles de solucionar. Abstract In this project, different images of rock fragments of different grain sizes corresponding to a series of blasts from the same quarry have been analyzed. To study each blast, 20 images has been used and studied with the software Split Desktop 3.1. Rock fragments from each image has been delimitated with the software, obtaining a grading curve of each one. Once these curves are calculated, the mean curve of these data set is obtained and can be considered the mean curve of each blast. Different software solutions as manual, online and automatic, has been used for the analysis of these images. Then the results has been compared between them. These results are shown through a series of graphs and tables, that are explained in detail, to enhance the understanding of the study. From these results, it can be said that the image processing with online and automatic options from Split, leads to the same result, after an statistical study. On the contrary, the manual Split mode is different from the others; however is not possible to assert what will be the best. The manual Split mode depends on the operator ability and dedication, although the online mode depends on the software settings, so therefore, both have some uncertainties that are difficult to solve.
Resumo:
En minería, la estimación de la curva granulométrica del escombro de voladura es importante para evaluar el diseño, ejecución y optimización de la misma. Para ello, actualmente se usan sistemas digitales de fotografías que obtienen dicha curva a partir de imágenes tomadas por una cámara. En este proyecto se ha analizado la fragmentación de seis voladuras realizadas en el año 2012 en la cantera “El Aljibe” situada en el término municipal de Almonacid de Toledo con un sistema automático en línea (Split Online) y con un software de otra compañía (WipFrag) que permite la edición manual de las imágenes. Han sido analizadas 120 imágenes de seis voladuras, elegidas aleatoriamente. Tras el estudio granulométrico, se observa que las curvas granulométricas obtenidas con ambos sistemas, estadísticamente, no son la misma en la mayor parte de la curva, por tanto, se analiza una posible relación entre los tamaños característicos X50 y X80, llegando a la conclusión de que ninguno de los sistemas es totalmente fiable, y es necesario calibrar los sistemas con datos de fragmentación reales obtenidos por medio de básculas. Abstract In mining, the estimate of the granulometric curve blasting debris is very important to evaluate the design, implementation and optimization of it. Currently, for the obtaining of this curves are used digital system of pictures taken by a camera. In this project, the fragmentation of six rock blasting were analyzed. The rock blastings are executed in 2012 in the quarry “El Aljibe” located in Almonacid de Toledo, with a automatic online system (Split Online) and a manual editing software (WipFrag). 120 randomly selected pictures have been analyzed. After the granulometric study, it appears that the size distribution curves obtained with both systems, statistically, are not the same, then, a possible relationship between the feature sizes X50 and X80 is analyzed, concluding that none of the systems is fully reliable, and systems must be calibrated with real data fragmentation obtained from data scales.
Resumo:
En las ultimas décadas hemos sufrido un gran cambio en el modo, como en la calidad de Vida en el cual se debe a gran medida al avance tan grande que ha habido en el mundo tecnológico. Alguno de estos avances y en el cual tratara el proyecto son la codificaciones y formato de video. En las décadas que llevamos de televisión en color hay dos formatos de video en los cuales han destacado sobre el resto uno que es el sistema de codificación analógico PAL ,que es el sistema de televisión Analógica que se utilizaba en toda Europa (Exceptuando Francia) y en la mayoría de la población mundial. Por otro lado tenemos el otro sistema de video que es el HD aunque el proyecto lleva 40 años existiendo he tomado una mayor importancia ahora con el cambio que se ha habido de pasar de una televisión analógica a una televisión digital. En este proyecto se creara una herramienta capaz de transformar un video en Formato PAL que es un formato que tiene 720 pixeles de longitud y 576 pixeles de altura al formato de video HD que en su caso tiene las dimensiones 1920x 1080 pixeles de longitud y altura respectivamente.
Resumo:
La reconstrucción y caracterización de las espinas dendríticas es hoy en día un área de trabajo de gran interés en la investigación neurobiológica. Las dendritas son prolongaciones en forma de ramas de la neurona. Las espinas dendríticas se encuentran a lo largo de las dendritas y son las encargadas de transmitir los impulsos electroquímicos al cuerpo de la neurona. El objetivo de este trabajo es desarrollar un algoritmo con el objetivo de mejorar las reconstrucciones 3D de las espinas dendríticas. Se ha utilizado un algoritmo de segmentación basado en los contornos activos morfológicos para analizar las imágenes de partida y conseguir nuevas reconstrucciones 3D fieles a estas imágenes. En este documento presentamos todo el desarrollo necesario para llevar a cabo los objetivos del proyecto. Por último también se presentarán los resultados obtenidos con este método comparándolo con las reconstrucciones de partida. ABSTRACT The reconstruction and characterization of dendritic spines is a hot topic in modern neurobiology research. Dendrites are the branched ramifications of a neuron. Dendritic spines are found along the dendrites and are responsible for transmitting electrochemical signals to the neuron’s main body. The purpose of this work is to develop an algorithm to improve the 3D reconstruction of dendritic spines. We use a segmentation algorithm based on morphological active contours to analyze the images and get new faithful 3D reconstructions of these images. In this document we present all the development necessary to accomplish the project goals. Finally, we will compare present results obtained by this method with the starting reconstructions.
Resumo:
En este Trabajo fin de Grado se ha creado la parte funcional de una aplicación móvil dejando la parte de la interfaz libre para su futura implementación. La aplicación es un magnificador y está destinada a aquellas personas con baja visión, permitiéndoles hacer aumento de imágenes y textos capturados por la cámara del dispositivo, con la posibilidad de que puedan cambiar algunos parámetros de la magnificación para poderlo ver mejor. La parte funcional de la aplicación fue nombrada como librería magnificador, ya que se compone de métodos implementados en Java que permiten hacer diferentes modificaciones de la imagen o del video visualizado. Se cubrieron todas las fases de desarrollo más significativas de un sistema software: análisis, diseño, implementación y pruebas. La aplicación se desarrolló para Android. Se trabajó en Eclipse con Android SDK. Para el procesamiento de las imágenes se aprovechó una librería externa, OpenCV, para evitar “inventar la rueda”, es decir, no escribir algoritmos de transformación de las imágenes que seguramente no podrían ser tan eficientes como los implementados en dicha librería creada por Intel. ---ABSTRACT---In this Final Project, the functional part of mobile phone application was created, leaving the interface parte for future implementation. The application is a magnifier and is oriented to people with very low vision allowing them to enlarge images of printed documents captured by the camera of the mobile phone device, with the possibility that they can change some parameters of magnification so that it can see better. The functional part of this application was named magnifier library because it composes of methods, implemented in Java, that allows changing between different modes of the preview of the image or video. All of the most significant phases of software development were satisfied: analysis, design, implementation and tests. The application was created for Android. The work was done in Eclipse with Android SDK plugin. For the image processing, an external library, OpenCv, was used, to avoid the unreachable intent of creation of effective algorithms that would never be so potent like the implemented in this library created by Intel.
Resumo:
Este proyecto presenta un software para el análisis de imágenes dermatoscópicas correspondiente a lesiones melanocíticas, con el fin de clasificarlas entre lesiones benignas y melanoma. El sistema realiza una segmentación automática de la lesión y la procesa en varas etapas, extrayendo características de relevancia diagnóstica: asimetría, colores, irregularidad del borde, y la presencia de estructuras como redes pigmentadas atípicas o velo azul-blanquecino. Proporciona además una herramienta para el etiquetado manual de estructuras adicionales. La clasificación automática de las lesiones se realiza en base a los métodos de diagnóstico más comúnmente utilizados: las reglas ABCD, Menzies, 7-point checklist, CASH y CHAOS & CLUES. El sistema de clasificación se evalúa sobre una base de datos de imágenes dermatoscópicas, y se realiza una comparativa de los resultados obtenidos por cada método de diagnóstico. ABSTRACT. This project presents a software for the analysis of dermoscopic images of melanocytic lesions, and their classification into benign lesions and melanoma. The system performs automatic segmentation of the lesion and goes through several stages of extraction of certain characteristics relevant to the diagnosis, such as asymmetry, border irregularity, or presence of structures like atypical pigmented network or blue-whitish veil. Automatic classification of the lesions is accomplished by means of the most commonly used diagnostic methods, such as ABCD and Menzies's rules, the 7-point checklist, CASH, and CHAOS & CLUES. The classification system is evaluated by using a dermoscopic image database, and a comparison of the results yielded by the different diagnostic methods is performed.
Resumo:
ImageJ es un programa informático de tratamiento digital de imagen orientado principalmente hacia el ámbito de las ciencias de la salud. Se trata de un software de dominio público y de código abierto desarrollado en lenguaje Java en las instituciones del National Institutes of Health de Estados Unidos. Incluye por defecto potentes herramientas para editar, procesar y analizar imágenes de casi cualquier tipo y formato. Sin embargo, su mayor virtud reside en su extensibilidad: las funcionalidades de ImageJ pueden ampliarse hasta resolver casi cualquier problema de tratamiento digital de imagen mediante macros, scripts y, especialmente, plugins programables en lenguaje Java gracias a la API que ofrece. Además, ImageJ cuenta con repositorios oficiales en los que es posible obtener de forma gratuita macros, scripts y plugins aplicables en multitud de entornos gracias a la labor de la extensa comunidad de desarrolladores de ImageJ, que los depura, mejora y amplia frecuentemente. Este documento es la memoria de un proyecto que consiste en el análisis detallado de las herramientas de tratamiento digital de imagen que ofrece ImageJ. Tiene por objetivo determinar si ImageJ, a pesar de estar más enfocado a las ciencias de la salud, puede resultar útil en el entorno de la Escuela Técnica Superior de Ingeniería y Sistemas de Telecomunicación de la Universidad Politécnica de Madrid, y en tal caso, resaltar las características que pudieran resultar más beneficiosas en este ámbito y servir además como guía introductoria. En las siguientes páginas se examinan una a una las herramientas de ImageJ (versión 1.48q), su funcionamiento y los mecanismos subyacentes. Se sigue el orden marcado por los menús de la interfaz de usuario: el primer capítulo abarca las herramientas destinadas a la manipulación de imágenes en general (menú Image); el segundo, las herramientas de procesado (menú Process); el tercero, las herramientas de análisis (menú Analyze); y el cuarto y último, las herramientas relacionadas con la extensibilidad de ImageJ (menú Plugins). ABSTRACT. ImageJ is a digital image processing computer program which is mainly focused at the health sciences field. It is a public domain, open source software developed in Java language at the National Institutes of Health of the United States of America. It includes powerful built-in tools to edit, process and analyze almost every type of image in nearly every format. However, its main virtue is its extensibility: ImageJ functionalities can be widened to solve nearly every situation found in digital image processing through macros, scripts and, specially, plugins programmed in Java language thanks to the ImageJ API. In addition, ImageJ has official repositories where it is possible to freely get many different macros, scripts and plugins thanks to the work carried out by the ImageJ developers community, which continuously debug, improve and widen them. This document is a report which explains a detailed analysis of all the digital image processing tools offered by ImageJ. Its final goal is to determine if ImageJ can be useful to the environment of Escuela Tecnica Superior de Ingenierfa y Sistemas de Telecomunicacion of Universidad Politecnica de Madrid, in spite of being focused at the health sciences field. In such a case, it also aims to highlight the characteristics which could be more beneficial in this field, and serve as an introductory guide too. In the following pages, all of the ImageJ tools (version 1.48q) are examined one by one, as well as their work and the underlying mechanics. The document follows the order established by the menus in ImageJ: the first chapter covers all the tools destined to manipulate images in general (menu Image); the second one covers all the processing tools (menu Process); the third one includes analyzing tools (menu Analyze); and finally, the fourth one contains all those tools related to ImageJ extensibility (menu Plugins).
Resumo:
La relación entre la ingeniería y la medicina cada vez se está haciendo más estrecha, y debido a esto se ha creado una nueva disciplina, la bioingeniería, ámbito en el que se centra el proyecto. Este ámbito cobra gran interés debido al rápido desarrollo de nuevas tecnologías que en particular permiten, facilitan y mejoran la obtención de diagnósticos médicos respecto de los métodos tradicionales. Dentro de la bioingeniería, el campo que está teniendo mayor desarrollo es el de la imagen médica, gracias al cual se pueden obtener imágenes del interior del cuerpo humano con métodos no invasivos y sin necesidad de recurrir a la cirugía. Mediante métodos como la resonancia magnética, rayos X, medicina nuclear o ultrasonidos, se pueden obtener imágenes del cuerpo humano para realizar diagnósticos. Para que esas imágenes puedan ser utilizadas con ese fin hay que realizar un correcto tratamiento de éstas mediante técnicas de procesado digital. En ése ámbito del procesado digital de las imágenes médicas es en el que se ha realizado este proyecto. Gracias al desarrollo del tratamiento digital de imágenes con métodos de extracción de información, mejora de la visualización o resaltado de rasgos de interés de las imágenes, se puede facilitar y mejorar el diagnóstico de los especialistas. Por todo esto en una época en la que se quieren automatizar todos los procesos para mejorar la eficacia del trabajo realizado, el automatizar el procesado de las imágenes para extraer información con mayor facilidad, es muy útil. Actualmente una de las herramientas más potentes en el tratamiento de imágenes médicas es Matlab, gracias a su toolbox de procesado de imágenes. Por ello se eligió este software para el desarrollo de la parte práctica de este proyecto, su potencia y versatilidad simplifican la implementación de algoritmos. Este proyecto se estructura en dos partes. En la primera se realiza una descripción general de las diferentes modalidades de obtención de imágenes médicas y se explican los diferentes usos de cada método, dependiendo del campo de aplicación. Posteriormente se hace una descripción de las técnicas más importantes de procesado de imagen digital que han sido utilizadas en el proyecto. En la segunda parte se desarrollan cuatro aplicaciones en Matlab para ejemplificar el desarrollo de algoritmos de procesado de imágenes médicas. Dichas implementaciones demuestran la aplicación y utilidad de los conceptos explicados anteriormente en la parte teórica, como la segmentación y operaciones de filtrado espacial de la imagen, así como otros conceptos específicos. Las aplicaciones ejemplo desarrolladas han sido: obtención del porcentaje de metástasis de un tejido, diagnóstico de las deformidades de la columna vertebral, obtención de la MTF de una cámara de rayos gamma y medida del área de un fibroadenoma de una ecografía de mama. Por último, para cada una de las aplicaciones se detallará su utilidad en el campo de la imagen médica, los resultados obtenidos y su implementación en una interfaz gráfica para facilitar su uso. ABSTRACT. The relationship between medicine and engineering is becoming closer than ever giving birth to a recently appeared science field: bioengineering. This project is focused on this subject. This recent field is becoming more and more important due to the fast development of new technologies that provide tools to improve disease diagnosis, with regard to traditional procedures. In bioengineering the fastest growing field is medical imaging, in which we can obtain images of the inside of the human body without need of surgery. Nowadays by means of the medical modalities of magnetic resonance, X ray, nuclear medicine or ultrasound, we can obtain images to make a more accurate diagnosis. For those images to be useful within the medical field, they should be processed properly with some digital image processing techniques. It is in this field of digital medical image processing where this project is developed. Thanks to the development of digital image processing providing methods for data collection, improved visualization or data highlighting, diagnosis can be eased and facilitated. In an age where automation of processes is much sought, automated digital image processing to ease data collection is extremely useful. One of the most powerful image processing tools is Matlab, together with its image processing toolbox. That is the reason why that software was chosen to develop the practical algorithms in this project. This final project is divided into two main parts. Firstly, the different modalities for obtaining medical images will be described. The different usages of each method according to the application will also be specified. Afterwards we will give a brief description of the most important image processing tools that have been used in the project. Secondly, four algorithms in Matlab are implemented, to provide practical examples of medical image processing algorithms. This implementation shows the usefulness of the concepts previously explained in the first part, such as: segmentation or spatial filtering. The particular applications examples that have been developed are: calculation of the metastasis percentage of a tissue, diagnosis of spinal deformity, approximation to the MTF of a gamma camera, and measurement of the area of a fibroadenoma in an ultrasound image. Finally, for each of the applications developed, we will detail its usefulness within the medical field, the results obtained, and its implementation in a graphical user interface to ensure ease of use.
Resumo:
A nivel mundial, el cáncer de mama es el tipo de cáncer más frecuente además de una de las principales causas de muerte entre la población femenina. Actualmente, el método más eficaz para detectar lesiones mamarias en una etapa temprana es la mamografía. Ésta contribuye decisivamente al diagnóstico precoz de esta enfermedad que, si se detecta a tiempo, tiene una probabilidad de curación muy alta. Uno de los principales y más frecuentes hallazgos en una mamografía, son las microcalcificaciones, las cuales son consideradas como un indicador importante de cáncer de mama. En el momento de analizar las mamografías, factores como la capacidad de visualización, la fatiga o la experiencia profesional del especialista radiólogo hacen que el riesgo de omitir ciertas lesiones presentes se vea incrementado. Para disminuir dicho riesgo es importante contar con diferentes alternativas como por ejemplo, una segunda opinión por otro especialista o un doble análisis por el mismo. En la primera opción se eleva el coste y en ambas se prolonga el tiempo del diagnóstico. Esto supone una gran motivación para el desarrollo de sistemas de apoyo o asistencia en la toma de decisiones. En este trabajo de tesis se propone, se desarrolla y se justifica un sistema capaz de detectar microcalcificaciones en regiones de interés extraídas de mamografías digitalizadas, para contribuir a la detección temprana del cáncer demama. Dicho sistema estará basado en técnicas de procesamiento de imagen digital, de reconocimiento de patrones y de inteligencia artificial. Para su desarrollo, se tienen en cuenta las siguientes consideraciones: 1. Con el objetivo de entrenar y probar el sistema propuesto, se creará una base de datos de imágenes, las cuales pertenecen a regiones de interés extraídas de mamografías digitalizadas. 2. Se propone la aplicación de la transformada Top-Hat, una técnica de procesamiento digital de imagen basada en operaciones de morfología matemática. La finalidad de aplicar esta técnica es la de mejorar el contraste entre las microcalcificaciones y el tejido presente en la imagen. 3. Se propone un algoritmo novel llamado sub-segmentación, el cual está basado en técnicas de reconocimiento de patrones aplicando un algoritmo de agrupamiento no supervisado, el PFCM (Possibilistic Fuzzy c-Means). El objetivo es encontrar las regiones correspondientes a las microcalcificaciones y diferenciarlas del tejido sano. Además, con la finalidad de mostrar las ventajas y desventajas del algoritmo propuesto, éste es comparado con dos algoritmos del mismo tipo: el k-means y el FCM (Fuzzy c-Means). Por otro lado, es importante destacar que en este trabajo por primera vez la sub-segmentación es utilizada para detectar regiones pertenecientes a microcalcificaciones en imágenes de mamografía. 4. Finalmente, se propone el uso de un clasificador basado en una red neuronal artificial, específicamente un MLP (Multi-layer Perceptron). El propósito del clasificador es discriminar de manera binaria los patrones creados a partir de la intensidad de niveles de gris de la imagen original. Dicha clasificación distingue entre microcalcificación y tejido sano. ABSTRACT Breast cancer is one of the leading causes of women mortality in the world and its early detection continues being a key piece to improve the prognosis and survival. Currently, the most reliable and practical method for early detection of breast cancer is mammography.The presence of microcalcifications has been considered as a very important indicator ofmalignant types of breast cancer and its detection and classification are important to prevent and treat the disease. However, the detection and classification of microcalcifications continue being a hard work due to that, in mammograms there is a poor contrast between microcalcifications and the tissue around them. Factors such as visualization, tiredness or insufficient experience of the specialist increase the risk of omit some present lesions. To reduce this risk, is important to have alternatives such as a second opinion or a double analysis for the same specialist. In the first option, the cost increases and diagnosis time also increases for both of them. This is the reason why there is a great motivation for development of help systems or assistance in the decision making process. This work presents, develops and justifies a system for the detection of microcalcifications in regions of interest extracted fromdigitizedmammographies to contribute to the early detection of breast cancer. This systemis based on image processing techniques, pattern recognition and artificial intelligence. For system development the following features are considered: With the aim of training and testing the system, an images database is created, belonging to a region of interest extracted from digitized mammograms. The application of the top-hat transformis proposed. This image processing technique is based on mathematical morphology operations. The aim of this technique is to improve the contrast betweenmicrocalcifications and tissue present in the image. A novel algorithm called sub-segmentation is proposed. The sub-segmentation is based on pattern recognition techniques applying a non-supervised clustering algorithm known as Possibilistic Fuzzy c-Means (PFCM). The aim is to find regions corresponding to the microcalcifications and distinguish them from the healthy tissue. Furthermore,with the aim of showing themain advantages and disadvantages this is compared with two algorithms of same type: the k-means and the fuzzy c-means (FCM). On the other hand, it is important to highlight in this work for the first time the sub-segmentation is used for microcalcifications detection. Finally, a classifier based on an artificial neural network such as Multi-layer Perceptron is used. The purpose of this classifier is to discriminate froma binary perspective the patterns built from gray level intensity of the original image. This classification distinguishes between microcalcifications and healthy tissue.