893 resultados para Problem gambling
More than just a problem with faces: Altered body perception in a group of congenital prosopagnosics
Resumo:
It has been estimated that one out of forty people in the general population suffer from congenital prosopagnosia (CP), a neurodevelopmental disorder characterized by difficulty identifying people by their faces. CP involves impairment in recognising faces, although the perception of non-face stimuli may also be impaired. Given that social interaction does not only depend on face processing, but also the processing of bodies, it is of theoretical importance to ascertain whether CP is also characterised by body perception impairments. Here, we tested eleven CPs and eleven matched control participants on the Body Identity Recognition Task (BIRT), a forced-choice match-to-sample task, using stimuli that require processing of body, not clothing, specific features. Results indicated that the group of CPs was as accurate as controls on the BIRT, which is in line with the lack of body perception complaints by CPs. However the CPs were slower than controls, and when accuracy and response times were combined into inverse efficiency scores (IES), the group of CPs were impaired, suggesting that the CPs could be using more effortful cognitive mechanisms to be as accurate as controls. In conclusion, our findings demonstrate CP may not generally be limited to face processing difficulties, but may also extend to body perception
Resumo:
This chapter focuses on the development of organizational creativity, using the CPS methodology, aiming at demonstrating its effectiveness in using the individual and team divergent thinking improvement in identifying organizational problems. A study was undertaken using problem solving teams in seven companies, in which each individual was submitted to a pre-post test in attitudes towards divergent thinking and asked to express the evaluation of the method. All the information reported in the sessions was recorded. The results indicate a change in attitude favourable to divergent thinking, the provision of a professional, efficient method of organizing knowledge in such a way that can help individuals to find original solutions to problems, and an important way to lead teams to creativity and innovation, according with companies different orientations.
Resumo:
This research focuses on creativity and innovation management in organizations. We present a model of intervention that aims at establishing a culture of organizational innovation through the internal development of individual and team creativity focusing on problem solving. The model relies on management’s commitment and in the organization’s talented people (creative leaders and employees) as a result of their ability in defining a better organization. The design follows Min Basadur’s problem solving approach consisting of problem finding, fact finding, problem definition, solution finding and decision implementation. These steps are carried out using specific techniques and procedures that will link creative people and management in order to initiate the process until problems are defined. For each defined problem, project teams will develop possible solutions and implement these decisions. Thus, a system of transformation of the individual and team creativity into organizational innovation can be established.
Resumo:
Discrete optimization problems are very difficult to solve, even if the dimention is small. For most of them the problem of finding an ε-approximate solution is already NP-hard. The branch-and-bound algorithms are the most used algorithms for solving exactly this sort of problems.
Resumo:
Discrete optimization problems are very difficult to solve, even if the dimantion is small. For most of them the problem of finding an ε-approximate solution is already NP-hard.
Resumo:
Least squares solutions are a very important problem, which appear in a broad range of disciplines (for instance, control systems, statistics, signal processing). Our interest in this kind of problems lies in their use of training neural network controllers.
Resumo:
Least squares solutions are a very important problem, which appear in a broad range of disciplines (for instance, control systems, statistics, signal processing). Our interest in this kind of problems lies in their use of training neural network controllers.
Resumo:
In this paper we consider the learning problem for a class of multilayer perceptrons which is practically relevant in control systems applications. By reformulating this problem, a new criterion is developed, which reduces the number of iterations required for the learning phase.
Resumo:
The purpose of this study was to evaluate the effectiveness of the Creative Problem Solving (CPS) method in improving the leadership process in a non-profit organization. The research was designed around an intervention and structured in three stages (pre-consult, intervention and follow-up), with a team designated by management, in order to bring leadership cohesion to both departments of the organization and also between the board and executive management. The results, expressed in the tasks performed and in the interviews to team members, allowed us to conclude on the effectiveness of the CPS method to improve organizational leadership, by establishing a stronger relationship between departments, as well as, in the long term, between the board and executive management. These results highlight possible solutions to improve the leadership of non-profit organizations.
Resumo:
Abschlussvorlesung von Günter Buchholz, in welcher er sich über das Grimmsche Märchen "Hans im Glück" dem Problem des Wertes zuwendet und sich mit der Geschichte der ökonomischen Theorie befasst.
Resumo:
This work describes how genetic programming is applied to evolving controllers for the minimum time swing up and inverted balance tasks of the continuous state and action: limited torque acrobot. The best swing-up controller is able to swing the acrobot up to a position very close to the inverted ‘handstand’ position in a very short time, shorter than that of Coulom (2004), who applied the same constraints on the applied torque values, and to take only slightly longer than the approach by Lai et al. (2009) where far larger torque values were allowed. The best balance controller is able to balance the acrobot in the inverted position when starting from the balance position for the length of time used in the fitness function in all runs; furthermore, 47 out of 50 of the runs evolve controllers able to maintain the balance position for an extended period, an improvement on the balance controllers generated by Dracopoulos and Nichols (2012), which this paper is extended from. The most successful balance controller is also able to balance the acrobot when starting from a small offset from the balance position for this extended period.
Resumo:
This paper addresses the problem of energy resource scheduling. An aggregator will manage all distributed resources connected to its distribution network, including distributed generation based on renewable energy resources, demand response, storage systems, and electrical gridable vehicles. The use of gridable vehicles will have a significant impact on power systems management, especially in distribution networks. Therefore, the inclusion of vehicles in the optimal scheduling problem will be very important in future network management. The proposed particle swarm optimization approach is compared with a reference methodology based on mixed integer non-linear programming, implemented in GAMS, to evaluate the effectiveness of the proposed methodology. The paper includes a case study that consider a 32 bus distribution network with 66 distributed generators, 32 loads and 50 electric vehicles.
Resumo:
To maintain a power system within operation limits, a level ahead planning it is necessary to apply competitive techniques to solve the optimal power flow (OPF). OPF is a non-linear and a large combinatorial problem. The Ant Colony Search (ACS) optimization algorithm is inspired by the organized natural movement of real ants and has been successfully applied to different large combinatorial optimization problems. This paper presents an implementation of Ant Colony optimization to solve the OPF in an economic dispatch context. The proposed methodology has been developed to be used for maintenance and repairing planning with 48 to 24 hours antecipation. The main advantage of this method is its low execution time that allows the use of OPF when a large set of scenarios has to be analyzed. The paper includes a case study using the IEEE 30 bus network. The results are compared with other well-known methodologies presented in the literature.
Resumo:
The paper introduces an approach to solve the problem of generating a sequence of jobs that minimizes the total weighted tardiness for a set of jobs to be processed in a single machine. An Ant Colony System based algorithm is validated with benchmark problems available in the OR library. The obtained results were compared with the best available results and were found to be nearer to the optimal. The obtained computational results allowed concluding on their efficiency and effectiveness.
Resumo:
The main goal of this work is to solve mathematical program with complementarity constraints (MPCC) using nonlinear programming techniques (NLP). An hyperbolic penalty function is used to solve MPCC problems by including the complementarity constraints in the penalty term. This penalty function [1] is twice continuously differentiable and combines features of both exterior and interior penalty methods. A set of AMPL problems from MacMPEC [2] are tested and a comparative study is performed.