803 resultados para Probability sample
On-line Gaussian mixture density estimator for adaptive minimum bit-error-rate beamforming receivers
Resumo:
We develop an on-line Gaussian mixture density estimator (OGMDE) in the complex-valued domain to facilitate adaptive minimum bit-error-rate (MBER) beamforming receiver for multiple antenna based space-division multiple access systems. Specifically, the novel OGMDE is proposed to adaptively model the probability density function of the beamformer’s output by tracking the incoming data sample by sample. With the aid of the proposed OGMDE, our adaptive beamformer is capable of updating the beamformer’s weights sample by sample to directly minimize the achievable bit error rate (BER). We show that this OGMDE based MBER beamformer outperforms the existing on-line MBER beamformer, known as the least BER beamformer, in terms of both the convergence speed and the achievable BER.
Resumo:
The present systematic review was performed to assess consumer purchasing behaviour towards fish and seafood products in the wide context of developed countries. Web of Science, Scopus, ScienceDirect and Google Scholar engines were used to search the existing literature and a total of 49 studies were identified for inclusion. These studies investigated consumer purchasing behaviour towards a variety of fish and seafood products, in different countries and by means of different methodological approaches. In particular, the review identifies and discusses the main drivers and barriers of fish consumption as well as consumers’ preferences about the most relevant attributes of fish and seafood products providing useful insights for both practitioners and policy makers. Finally, main gaps of the existing literature and possible trajectories for future research are also discussed.
Resumo:
BACKGROUND: Few studies have addressed the course and severity of maternal depression and its effects on child psychiatric disorders from a longitudinal perspective. This study aimed to identify longitudinal patterns of maternal depression and to evaluate whether distinct depression trajectories predict particular psychiatric disorders in offspring. METHODS: Cohort of 4231 births followed-up in the city of Pelotas, Brazil. Maternal depressive symptoms were assessed with the Edinburgh Postnatal Depression Scale (EPDS) at 3, 12, 24 and 48 months and 6 years after delivery. Psychiatric disorders in 6-year-old children were evaluated through the development and well-being assessment (DAWBA) instrument. Trajectories of maternal depression were calculated using a group-based modelling approach. RESULTS: We identified five trajectories of maternal depressive symptoms: a "low" trajectory (34.8%), a "moderate low" (40.9%), a "increasing" (9.0%), a "decreasing" (9.9%), and a "high-chronic" trajectory (5.4%). The probability of children having any psychiatric disorder, as well as both internalizing and externalizing problems, increased as we moved from the "low" to the "high-chronic" trajectory. These differences were not explained by maternal and child characteristics examined in multivariate analyses. LIMITATIONS: Data on maternal depression at 3-months was available on only a sub-sample. In addition, we had to rely on maternal report of child's behavior alone. CONCLUSIONS: The study revealed an additive effect on child outcome of maternal depression over time. We identified a group of mothers with chronic and severe symptoms of depression throughout the first six years of the child life and for this group child psychiatric outcome was particularly compromised.
Resumo:
This paper proposes and tests a new framework for weighting recursive out-of-sample prediction errors according to their corresponding levels of in-sample estimation uncertainty. In essence, we show how to use the maximum possible amount of information from the sample in the evaluation of the prediction accuracy, by commencing the forecasts at the earliest opportunity and weighting the prediction errors. Via a Monte Carlo study, we demonstrate that the proposed framework selects the correct model from a set of candidate models considerably more often than the existing standard approach when only a small sample is available. We also show that the proposed weighting approaches result in tests of equal predictive accuracy that have much better sizes than the standard approach. An application to an exchange rate dataset highlights relevant differences in the results of tests of predictive accuracy based on the standard approach versus the framework proposed in this paper.
Resumo:
This paper presents an approximate closed form sample size formula for determining non-inferiority in active-control trials with binary data. We use the odds-ratio as the measure of the relative treatment effect, derive the sample size formula based on the score test and compare it with a second, well-known formula based on the Wald test. Both closed form formulae are compared with simulations based on the likelihood ratio test. Within the range of parameter values investigated, the score test closed form formula is reasonably accurate when non-inferiority margins are based on odds-ratios of about 0.5 or above and when the magnitude of the odds ratio under the alternative hypothesis lies between about 1 and 2.5. The accuracy generally decreases as the odds ratio under the alternative hypothesis moves upwards from 1. As the non-inferiority margin odds ratio decreases from 0.5, the score test closed form formula increasingly overestimates the sample size irrespective of the magnitude of the odds ratio under the alternative hypothesis. The Wald test closed form formula is also reasonably accurate in the cases where the score test closed form formula works well. Outside these scenarios, the Wald test closed form formula can either underestimate or overestimate the sample size, depending on the magnitude of the non-inferiority margin odds ratio and the odds ratio under the alternative hypothesis. Although neither approximation is accurate for all cases, both approaches lead to satisfactory sample size calculation for non-inferiority trials with binary data where the odds ratio is the parameter of interest.
Resumo:
This paper examines the impact of the auction process of residential properties that whilst unsuccessful at auction sold subsequently. The empirical analysis considers both the probability of sale and the premium of the subsequent sale price over the guide price, reserve and opening bid. The findings highlight that the final achieved sale price is influenced by key price variables revealed both prior to and during the auction itself. Factors such as auction participation, the number of individual bidders and the number of bids are significant in a number of the alternative specifications.
Resumo:
Objective. Numerous studies have reported elevated levels of overgeneral autobiographical memory among depressed patients and also among those previously exposed to a traumatic event. No previous study has examined their joint association with overgeneral memory in a community sample, nor examined whether the associations are with both juvenile- and adult-onset depression. Methods. The current study examined the relative importance of exposure to childhood abuse and neglect in overgeneral memory of women with and without a history of major depressive disorder (MDD). Autobiographical memory test together with standardized interviews of childhood experiences and MDD were assessed in a risk-stratified community sample of 103 women aged 25–37. Results. Overgenerality in memory was associated with recalled childhood sexual abuse (CSA) but not other adversities. A history of CSA was predictive of overgeneral memory bias even in the absence of MDD. Our analyses indicated no significant association between a history of MDD and overgeneral memory in women who reported no CSA. However, overgeneral memory was increased in women who reported CSA and MDD with a significant difference found in relation to positive cues, the highest scores being seen among those with adult rather than juvenile-onset depression. Conclusions. The findings highlight the significance of CSA in predicting overgeneral memory, differential response in relation to positive and negative cue memories, and point to a specific role in the development of depression for overgeneral memory following CSA.
Resumo:
We establish a general framework for a class of multidimensional stochastic processes over [0,1] under which with probability one, the signature (the collection of iterated path integrals in the sense of rough paths) is well-defined and determines the sample paths of the process up to reparametrization. In particular, by using the Malliavin calculus we show that our method applies to a class of Gaussian processes including fractional Brownian motion with Hurst parameter H>1/4, the Ornstein–Uhlenbeck process and the Brownian bridge.
Resumo:
This article provides new insights into the dependence of firm growth on age along the entire distribution of growth rates, and conditional on survival. Using data from the European firms in a global economy survey, and adopting a quantile regression approach, we uncover evidence for a sample of French, Italian and Spanish manufacturing firms with more than ten employees in the period from 2001 to 2008. We find that: (1) young firms grow faster than old firms, especially in the highest growth quantiles; (2) young firms face the same probability of declining as their older counterparts; (3) results are robust to the inclusion of other firms’ characteristics such as labor productivity, capital intensity and the financial structure; (4) high growth is associated with younger chief executive officers and other attributes that capture the attitude of the firm toward growth and change. The effect of age on firm growth is rather similar across countries.
Resumo:
This study examines the effects of a multi-session Cognitive Bias Modification (CBM) program on interpretative biases and social anxiety in an Iranian sample. Thirty-six volunteers with a high score on social anxiety measures were recruited from a student population and randomly allocated into the experimental and control groups. In the experimental group, participants received 4 sessions of positive CBM for interpretative biases (CBM-I) over 2 weeks in the laboratory. Participants in the control condition completed a neutral task matched the active CBM-I intervention in format and duration but did not encourage positive disambiguation of socially ambiguous scenarios. The results indicated that after training the positive CBM-I group exhibited more positive (and less negative) interpretations of ambiguous scenarios and less social anxiety symptoms relative to the control condition at both 1 week post-test and 7 weeks follow-up. It is suggested that clinical trials are required to establish the clinical efficacy of this intervention for social anxiety.
Resumo:
We report between-subject results on the effect of monetary stakes on risk attitudes. While we find the typical risk seeking for small probabilities, risk seeking is reduced under high stakes. This suggests that utility is not consistently concave.
An LDA and probability-based classifier for the diagnosis of Alzheimer's Disease from structural MRI
Resumo:
In this paper a custom classification algorithm based on linear discriminant analysis and probability-based weights is implemented and applied to the hippocampus measurements of structural magnetic resonance images from healthy subjects and Alzheimer’s Disease sufferers; and then attempts to diagnose them as accurately as possible. The classifier works by classifying each measurement of a hippocampal volume as healthy controlsized or Alzheimer’s Disease-sized, these new features are then weighted and used to classify the subject as a healthy control or suffering from Alzheimer’s Disease. The preliminary results obtained reach an accuracy of 85.8% and this is a similar accuracy to state-of-the-art methods such as a Naive Bayes classifier and a Support Vector Machine. An advantage of the method proposed in this paper over the aforementioned state of the art classifiers is the descriptive ability of the classifications it produces. The descriptive model can be of great help to aid a doctor in the diagnosis of Alzheimer’s Disease, or even further the understand of how Alzheimer’s Disease affects the hippocampus.
Resumo:
Iso-score curves graph (iSCG) and mathematical relationships between Scoring Parameters (SP) and Forecasting Parameters (FP) can be used in Economic Scoring Formulas (ESF) used in tendering to distribute the score among bidders in the economic part of a proposal. Each contracting authority must set an ESF when publishing tender specifications and the strategy of each bidder will differ depending on the ESF selected and the weight of the overall proposal scoring. The various mathematical relationships and density distributions that describe the main SPs and FPs, and the representation of tendering data by means of iSCGs, enable the generation of two new types of graphs that can be very useful for bidders who want to be more competitive: the scoring and position probability graphs.
Resumo:
Anticipating the number and identity of bidders has significant influence in many theoretical results of the auction itself and bidders' bidding behaviour. This is because when a bidder knows in advance which specific bidders are likely competitors, this knowledge gives a company a head start when setting the bid price. However, despite these competitive implications, most previous studies have focused almost entirely on forecasting the number of bidders and only a few authors have dealt with the identity dimension qualitatively. Using a case study with immediate real-life applications, this paper develops a method for estimating every potential bidder's probability of participating in a future auction as a function of the tender economic size removing the bias caused by the contract size opportunities distribution. This way, a bidder or auctioner will be able to estimate the likelihood of a specific group of key, previously identified bidders in a future tender.
Resumo:
Human observers exhibit large systematic distance-dependent biases when estimating the three-dimensional (3D) shape of objects defined by binocular image disparities. This has led some to question the utility of disparity as a cue to 3D shape and whether accurate estimation of 3D shape is at all possible. Others have argued that accurate perception is possible, but only with large continuous perspective transformations of an object. Using a stimulus that is known to elicit large distance-dependent perceptual bias (random dot stereograms of elliptical cylinders) we show that contrary to these findings the simple adoption of a more naturalistic viewing angle completely eliminates this bias. Using behavioural psychophysics, coupled with a novel surface-based reverse correlation methodology, we show that it is binocular edge and contour information that allows for accurate and precise perception and that observers actively exploit and sample this information when it is available.