732 resultados para Pringle, Heather
Resumo:
A high-resolution, 55-kyr long record of chalcophile and redox-sensitive trace element accumulation (Ag, Cd, Re, Mo) from MD02-2515, western Guaymas Basin, is investigated in conjunction with patterns in stratigraphy and productivity. High opal concentrations (~58 wt. %), representing increased diatom production, coincide with laminated sediments, and dilute the concentrations of organic carbon (Corg) and metals. A similarity between opal and normalized Corg, Ag and Cd concentrations suggests delivery to the sediments by diatom export production, while patterns in normalized Re and Mo accumulation suggest a different emplacement mechanism. Although Mo enrichment in organic-rich, laminated sediments typically represents anoxic conditions at other locations, Mo (and Re) in Guaymas Basin is enriched in nonlaminated and bioturbated sediments that are representative of oxygenated conditions. Adsorption onto Fe- and/or Mn-oxyhydroxide surfaces during oxygenation inadequately explains both the Re and Mo enrichments. Thus, recently published mechanisms invoking direct Re and Mo removal from the water column and bioturbation-assisted irrigation of Re into the sediments are used to explain the counterintuitive observations in Guaymas Basin. The MD02-2515 stratigraphic and proxy records are also different from other records in the northeast Pacific in that there is little correspondence with Greenland Dansgaard-Oeschger interstadials. There is some correlation with Heinrich events, suggesting that ventilation of intermediate waters and/or reduced productivity may be important in controlling stratigraphy and trace element accumulation. The results question whether MD02-2515 records can be compared to northeast Pacific open-margin records, especially before 17 kyr BP.
Resumo:
Aim Palaeoecological reconstructions document past vegetation change with estimates of rapid rates of changing species distribution limits that are often not matched by model simulations of climate-driven vegetation dynamics. Genetic surveys of extant plant populations have yielded new insight into continental vegetation histories, challenging traditional interpretations that had been based on pollen data. Our aim is to examine an updated continental pollen data set from Europe in the light of the new ideas about vegetation dynamics emerging from genetic research and vegetation modelling studies. Location Europe Methods: We use pollen data from the European Pollen Database (EPD) to construct interpolated maps of pollen percentages documenting change in distribution and abundance of major plant genera and the grass family in Europe over the last 15,000 years. Results: Our analyses confirm high rates of postglacial spread with at least 1000 metres per year for Corylus, Ulmus and Alnus and average rates of 400 metres per year for Tilia, Quercus, Fagus and Carpinus. The late Holocene expansions of Picea and Fagus populations in many European regions cannot be explained by migrational lag. Both taxa shift their population centres towards the Atlantic coast suggesting that climate may have played a role in the timing of their expansions. The slowest rates of spread were reconstructed for Abies. Main conclusions: The calculated rates of postglacial plant spread are higher in Europe than those from North America, which may be due to more rapid shifts in climate mediated by the Gulf Stream and westerly winds. Late Holocene anthropogenic land use practices in Europe had major effects on individual taxa, which in combination with climate change contributed to shifts in areas of abundance and dominance. The high rates of spread calculated from the European pollen data are consistent with the common tree species rapidly tracking early Holocene climate change and contribute to the debate on the consequences of global warming for plant distributions.
Resumo:
The tropical Pacific thermocline strength, depth, and tilt are critical to tropical mean state and variability. During the early Pliocene (~3.5 to 4.5 Ma), the Eastern Equatorial Pacific (EEP) thermocline was deeper and the cold tongue was warmer than today, which resulted in an mean state with a reduced zonal sea surface temperature gradient, or El Padre. However, it is unclear whether the deep thermocline was a local feature of the EEP or a basin-wide condition with global implications. Our measurements of Mg/Ca of Globorotalia tumida in a western equatorial Pacific site indicate Pliocene subsurface temperatures warmer than today; thus, El Padre included a basin-wide thermocline that was relatively warm, deep, and weakly tilted. At ~4 Ma, thermocline steepening was coupled to cooling of the cold tongue. Since ~4 Ma, the basin-wide thermocline cooled/shoaled gradually, with implications for thermocline feedbacks in tropical dynamics and the interpretation of TEX86-derived temperatures.
Resumo:
X-ray computed tomography (CT) provides an insight into the progression of dissolution in the tests of planktonic foraminifera. Four species of foraminifera (G. ruber [white], G. sacculifer, N. dutertrei and P. obliquiloculata) from Pacific, Atlantic and Indian Ocean core-top samples were examined by CT and SEM. Inner chamber walls began to dissolve at Delta[CO3**2-] values of 12-14 µmol/kg. Close to the calcite saturation horizon, dissolution and precipitation of calcite may occur simultaneously. Inner calcite of G. sacculifer, N. dutertrei and P. obliquiloculata from such sites appeared altered or replaced, whereas outer crust calcite was dense with no pores. Unlike the other species, there was no distinction between inner and outer calcite in CT scans of G. ruber. Empty calcite crusts of N. dutertrei and P. obliquiloculata were most resistant to dissolution and were present in samples where Delta[CO3**2-] ~ -20 µmol/kg. Five stages of preservation were identified in CT scans, and an empirical dissolution index, XDX, was established. XDX appears to be insensitive to initial test mass. Mass loss in response to dissolution was similar between species and sites at ~ 0.4 µg/µmol/kg. We provide calibrations to estimate Delta[CO3**2-] and initial test mass from XDX.
Resumo:
Anthropogenic carbon dioxide (CO2) emissions reduce pH of marine waters due to the absorption of atmospheric CO2 and formation of carbonic acid. Estuarine waters are more susceptible to acidification because they are subject to multiple acid sources and are less buffered than marine waters. Consequently, estuarine shell forming species may experience acidification sooner than marine species although the tolerance of estuarine calcifiers to pH changes is poorly understood. We analyzed 23 years of Chesapeake Bay water quality monitoring data and found that daytime average pH significantly decreased across polyhaline waters although pH has not significantly changed across mesohaline waters. In some tributaries that once supported large oyster populations, pH is increasing. Current average conditions within some tributaries however correspond to values that we found in laboratory studies to reduce oyster biocalcification rates or resulted in net shell dissolution. Calcification rates of juvenile eastern oysters, Crassostrea virginica, were measured in laboratory studies in a three-way factorial design with 3 pH levels, two salinities, and two temperatures. Biocalcification declined significantly with a reduction of ~0.5 pH units and higher temperature and salinity mitigated the decrease in biocalcification.
Resumo:
Increasing atmospheric carbon dioxide threatens to decrease pH in the world's oceans. Coastal and estuarine calcifying organisms of significant ecological and economical importance are at risk; however, several biogeochemical processes drive pH in these habitats. In particular, coastal and estuarine sediments are frequently undersaturated with respect to calcium carbonate due to high rates of organic matter remineralization, even when overlying waters are saturated. As a result, the post-larval stages of infaunal marine bivalves must be able to deposit new shell material in conditions that are corrosive to shell. We measured calcification rates on the hard clam, Mercenaria spp.,in 5 post-larval size classes (0.39, 0.56, 0.78, 0.98, and 2.90 mm shell height) using the alkalinity anomaly method. Acidity of experimental water was controlled by bubbling with air-CO2 blends to obtain pH values of 8.02, 7.64, and 7.41, corresponding to pCO2 values of 424, 1120, and 1950 µatm. These pH values are typical of those found in many near-shore terrigenous marine sediments. Our results show that calcification rate decreased with lower pH in all 5 size classes measured. We also found a significant effect of size on calcification rate, with the smaller post-larval sizes unable to overcome dissolution pressure. Increased calcification rate with size allowed the larger sizes to overcome dissolution pressure and deposit new shell material under corrosive conditions. Size dependency of pH effects on calcification is likely due to organogenesis and developmental shifts in shell mineralogy occurring through the post-larval stage. Furthermore, we found significantly different calcification rates between the 2 sources of hard clams we used for these experiments, most likely due to genotypic differences. Our findings confirm the susceptibility of the early life stages of this important bivalve to decreasing pH and reveal mechanisms behind the increased mortality in post-larval juvenile hard clams related to dissolution pressure, that has been found in previous studies.
Resumo:
Mg/Ca and d18O data for four species of planktic foraminifera (G. ruber (white), G. sacculifer (without sac), N. dutertrei, and P. obliquiloculata) from core top sediments from the tropical Pacific, Atlantic, and western Indian Ocean. Deepwater calcite saturation values (Delta[CO3**2-]) at the sites range from 55 to -23 µmol/kg.
Resumo:
Abundant hydroclimatic evidence from western Amazonia and the adjacent Andes documents wet conditions during Heinrich Stadial 1 (HS1, 18-15 ka), a cold period in the high latitudes of the North Atlantic. This precipitation anomaly was attributed to a strengthening of the South American summer monsoon due to a change in the Atlantic interhemispheric sea surface temperature (SST) gradient. However, the physical viability of this mechanism has never been rigorously tested. We address this issue by combining a thorough compilation of tropical South American paleorecords and a set of atmosphere model sensitivity experiments. Our results show that the Atlantic SST variations alone, although leading to dry conditions in northern South America and wet conditions in northeastern Brazil, cannot produce increased precipitation over western Amazonia and the adjacent Andes during HS1. Instead, an eastern equatorial Pacific SST increase (i.e., 0.5-1.5 °C), in response to the slowdown of the Atlantic Meridional Overturning Circulation during HS1, is crucial to generate the wet conditions in these regions. The mechanism works via anomalous low sea level pressure over the eastern equatorial Pacific, which promotes a regional easterly low-level wind anomaly and moisture recycling from central Amazonia towards the Andes.
Resumo:
Julian Barnes, Pat Barker, and Hanif Kureishi are all canonical authors whose fictions are widely believed to reflect the cultural and political state of a nation that is post-war, post-imperial and post-modern. While much has been written on how Barker’s and Kureishi’s early works in particular respond to and intervene in the presiding political narrative of the 1980s – Thatcherism – treatment of how revenants of Thatcherism have shaped these writers’ works from 1990 on has remained cursory. Thatcherism is more than an obvious historical reference point for Barker, Barnes, and Kureishi; their works demonstrate a sophisticated understanding of how Thatcher’s reworkings of the repertoires of Englishness – a representational as well as political and cultural endeavour – persist beyond her time in office. Barnes, Barker, and Kureishi seem to have reached the same conclusion as political and cultural critics: Thatcher and Thatcherism have remade not only the contemporary political and cultural landscapes but also the electorate and consequently the English themselves. Tony Blair’s conception of the New Britain proved less than satisfactory because contemporary repertoires of Englishness repeat and rework historical and not incidentally imperial formulations of England and Englishness rather than envision civic and populist formulations of renewal. Barnes’s England, England and Arthur & George confront the discourse of inevitability that has come to be attached to contemporary formulations of both political and cultural Englishness – both in terms of its predictable demise and its belated celebration. Kureishi’s The Buddha of Suburbia and “The Body” speak to an alteration that has taken place in which historical Englishness and Thatcherism have become complementary rather than contrasting discourses. What Barker’s Border Crossing and Double Vision offer against this backdrop is a subtle interrogation of how renewal itself comes to be a presiding mode of cultural reflection that absorbs revolutionary possibility.
Resumo:
Traditionally, ice-binding proteins (IBPs), also known as antifreeze proteins (AFPs), have been defined by two universal activities: ice recrystallization inhibition and thermal hysteresis. However, there remains the possibility IBPs have other complementary functions given the diversity found within this protein group. This thesis explores some of these in both natural and applied settings, in the hopes of furthering our understanding of this remarkable group of proteins. Plant IBPs could function as part of a defensive strategy against ice nucleators produced by certain pathogens. To assess this hypothesis, recombinant IBPs from perennial ryegrass and purple false brome were combined with the ice nucleation protein (INP) from the plant pathogen, Pseudomonas syringae. Strikingly, the plant proteins depressed the freezing point of the bacterial INP, while a fish AFP could not, nor did the INPs have any effect on IBP activity. Thus, the interaction between these two different proteins suggests a role in plant defensive strategies against pathogenic bacteria as another IBP function. In addition, the potential use of hyperactive insect IBPs in organ preservation was investigated. Current kidney preservation techniques involve storing the organ at 4 °C for a maximum of 24 h prior to transplantation. Extending this “safe” time would have profound effects on renal transplants, however, ischemic injury is prevalent when storage periods are prolonged. Experiments described here allowed subzero preservation for 72 h with the addition of a beetle IBP to CryoStasis® solution. Kidneys stored using the traditional technique for 24 h and the method developed here for 72 h showed similar levels of biomarker enzymes, underscoring the potential utility of insect IBPs for future transplant purposes. Finally, IBP function in the freeze-tolerant gall fly, Eurosta solidaginis, was examined. Larvae representing the mid-autumn stage displayed ice-binding activity, suggesting an IBP is being expressed, possibly as a protective measure against freezing damage when fall temperatures can unpredictably drop. IBP activity was also observed in the larvae’s host plant, Solidago spp. Mass spectrometry analysis of ice-affinity purified plant extracts provided three candidate pathogenesis-related proteins that could be responsible for the detected activity, further demonstrating additional functions of IBPs.
Resumo:
Metacognition is the understanding and control of cognitive processes. Students with high levels of metacognition achieve greater academic success. The purpose of this mixed-methods study was to examine elementary teachers’ beliefs about metacognition and integration of metacognitive practices in science. Forty-four teachers were recruited through professional networks to complete a questionnaire containing open-ended questions (n = 44) and Likert-type items (n = 41). Five respondents were selected to complete semi-structured interviews informed by the questionnaire. The selected interview participants had a minimum of three years teaching experience and demonstrated a conceptual understanding of metacognition. Statistical tests (Pearson correlation, t-tests, and multiple regression) on quantitative data and thematic analysis of qualitative data indicated that teachers largely understood metacognition but had some gaps in their understanding. Participants’ reported actions (teaching practices) and beliefs differed according to their years of experience but not gender. Hierarchical multiple regression demonstrated that the first block of gender and experience was not a significant predictor of teachers' metacognitive actions, although experience was a significant predictor by itself. Experience was not a significant predictor once teachers' beliefs were added. The majority of participants indicated that metacognition was indeed appropriate for elementary students. Participants consistently reiterated that students’ metacognition developed with practice, but required explicit instruction. A lack of consensus remained around the domain specificity of metacognition. More specifically, the majority of questionnaire respondents indicated that metacognitive strategies could not be used across subject domains, whereas all interviewees indicated that they used strategies across subjects. Metacognition was integrated frequently into Ontario elementary classrooms; however, metacognition was integrated less frequently in science lessons. Lastly, participants used a variety of techniques to integrate metacognition into their classrooms. Implications for practice include the need for more professional development aimed at integrating metacognition into science lessons at both the Primary and Junior levels. Further, teachers could benefit from additional clarification on the three main components of metacognition and the need to integrate all three to successfully develop students’ metacognition.