988 resultados para Pressure films
Resumo:
The compositional, structural, microstructural, dc electrical conductivity and optical properties of undoped zinc oxide films prepared by the sol-gel process using a spin-coating technique were investigated. The ZnO films were obtained by 5 cycle spin-coated and dried zinc oxide films followed by annealing in air at 600 A degrees C. The films deposited on the platinum coated silicon substrate were crystallized in a hexagonal wurtzite form. The energy-dispersive X-ray (EDX) spectrometry shows Zn and O elements in the products with an approximate molar ratio. TEM image of ZnO thin film shows that a grain of about 60-80 nm in size is really an aggregate of many small crystallites of around 10-20 nm. Electron diffraction pattern shows that the ZnO films exhibited hexagonal structure. The SEM micrograph showed that the films consist in nanocrystalline grains randomly distributed with voids in different regions. The dc conductivity found in the range of 10(-5)-10(-6) (Omega cm)(-1). The optical study showed that the spectra for all samples give the transparency in the visible range.
Resumo:
We describe a noniterative method for recovering optical absorption coefficient distribution from the absorbed energy map reconstructed using simulated and noisy boundary pressure measurements. The source reconstruction problem is first solved for the absorbed energy map corresponding to single- and multiple-source illuminations from the side of the imaging plane. It is shown that the absorbed energy map and the absorption coefficient distribution, recovered from the single-source illumination with a large variation in photon flux distribution, have signal-to-noise ratios comparable to those of the reconstructed parameters from a more uniform photon density distribution corresponding to multiple-source illuminations. The absorbed energy map is input as absorption coefficient times photon flux in the time-independent diffusion equation (DE) governing photon transport to recover the photon flux in a single step. The recovered photon flux is used to compute the optical absorption coefficient distribution from the absorbed energy map. In the absence of experimental data, we obtain the boundary measurements through Monte Carlo simulations, and we attempt to address the possible limitations of the DE model in the overall reconstruction procedure.
Resumo:
Sol-gel derived PbZrO3 (PZ) thin films have been deposited on Pt(111)/Ti/SiO2/Si substrate and according to the pseudotetragonal symmetry of PZ, the relatively preferred (110)t oriented phase formation has been noticed. The room temperature P‐E hysteresis loops have been observed to be slim by nature. The slim hysteresis loops are attributed to the [110]t directional antiparallel lattice motion of Pb ions and by the directionality of the applied electric field. Pure PZ formation has been characterized by the dielectric phase transition at 235 °C and antiferroelectric P‐E hysteresis loops at room temperature. Dielectric response has been characterized within a frequency domain of 100 Hz–1 MHz at various temperatures ranging from 40 to 350 °C. Though frequency dispersion of dielectric behaves like a Maxwell–Wagner type of relaxation, ω2 dependency of ac conductivity indicates that there must be G‐C equivalent circuit dominance at high frequency. The presence of trap charges in PZ has been determined by Arrhenius plots of ac conductivity. The temperature dependent n (calculated from the universal power law of ac conductivity) values indicate an anomalous behavior of the trapped charges. This anomaly has been explained by strongly and weakly correlated potential wells of trapped charges and their behavior on thermal activation. The dominance of circuit∕circuits resembling Maxwell–Wagner type has been investigated by logarithmic Nyquist plots at various temperatures and it has been justified that the dielectric dispersion is not from the actual Maxwell–Wagner-type response.
Resumo:
Bismuth vanadate (Bi2VO5.5, BVO) thin films have been deposited by a pulsed laser ablation technique on platinized silicon substrates. The surface morphology of the BVO thin films has been studied by atomic force microscopy (AFM). The optical properties of the BVO thin films were investigated using spectroscopic ellipsometric measurements in the 300–820 nm wavelength range. The refractive index (n), extinction coefficient (k) and thickness of the BVO thin films have been obtained by fitting the ellipsometric experimental data in a four-phase model (air/BVOrough/BVO/Pt). The values of the optical constants n and k that were determined through multilayer analysis at 600 nm were 2.31 and 0.056, respectively. For fitting the ellipsometric data and to interpret the optical constants, the unknown dielectric function of the BVO films was constructed using a Lorentz model. The roughness of the films was modeled in the Brugmann effective medium approximation and the results were compared with the AFM observations.
Resumo:
Nanocrystalline Zn1-xMnxS films (x=0.04, 0.08 and 0.12) were deposited on glass substrates at 400 K using a simple resistive thermal evaporation technique. All the deposited films were characterized by chemical, structural, morphological, optical and magnetic properties. Scanning electron microscopy and atomic force microscopy studies showed that all the films investigated were in nanocrystalline form with the grain size lying in the range 10–20 nm. All the films exhibited cubic structure and the lattice parameters increase linearly with composition. The absorption edge shifted from the higher-wavelength region to lower wavelengths with increase in Mn concentration. The magnetization increased sharply with increase of the Mn content up to x=0.08 and then decreased with further increase of the Mn content. Particularly, Zn0.92Mn0.08S concentration samples show a weak ferromagnetic nature, which might be the optimum concentration for optoelectronic and spintronic device applications.
Resumo:
Nickel rich NiTi films were sputter deposited on p-doped Si left angle bracket1 0 0right-pointing angle bracket substrates maintained at 300 °C. The films were subsequently solution treated at 700 °C for 30 min followed by ageing at 400 and 500 °C for 5 h. The microstructure of the films was examined by TEM and these studies revealed that the NiTi films were mostly amorphous in the as-deposited condition. The subsequent solution treatment and ageing resulted in crystallization of the films with the film aged at 400 °C exhibiting nanocrystalline grains and three phases viz. B2 (austenite), R and Ni3Ti2 whereas the film aged at 500 °C shows micron sized grains and two phases viz. R and Ni3Ti2. Nanoindentation studies revealed that the nature of the load versus indentation depth response for the films aged at 400 and 500 °C was different. For the same load, the indenter penetrated to a much greater depth for the film aged at 400 °C as compared to the film aged at 500 °C. Also the ratio of the residual indentation depth (hf) to maximum indentation depth (hmax) is lower for the film aged at 400 °C as compared to the film aged at 500 °C. This was attributed to the occurrence of stress induced martensitic transformation of the B2 phase present in the film aged at 400 °C during indentation loading which results in a transformation strain in addition to the normal elastic and plastic strains and its subsequent recovery on unloading. The hardness and elastic modulus measured using the Oliver and Pharr analysis was also found to be lower for the film aged at 400 °C as compared to the film aged at 500 °C which was also primarily attributed to the same effect.
Resumo:
Thin film applications have become increasingly important in our search for multifunctional and economically viable technological solutions of the future. Thin film coatings can be used for a multitude of purposes, ranging from a basic enhancement of aesthetic attributes to the addition of a complex surface functionality. Anything from electronic or optical properties, to an increased catalytic or biological activity, can be added or enhanced by the deposition of a thin film, with a thickness of only a few atomic layers at the best, on an already existing surface. Thin films offer both a means of saving in materials and the possibility for improving properties without a critical enlargement of devices. Nanocluster deposition is a promising new method for the growth of structured thin films. Nanoclusters are small aggregates of atoms or molecules, ranging in sizes from only a few nanometers up to several hundreds of nanometers in diameter. Due to their large surface to volume ratio, and the confinement of atoms and electrons in all three dimensions, nanoclusters exhibit a wide variety of exotic properties that differ notably from those of both single atoms and bulk materials. Nanoclusters are a completely new type of building block for thin film deposition. As preformed entities, clusters provide a new means of tailoring the properties of thin films before their growth, simply by changing the size or composition of the clusters that are to be deposited. Contrary to contemporary methods of thin film growth, which mainly rely on the deposition of single atoms, cluster deposition also allows for a more precise assembly of thin films, as the configuration of single atoms with respect to each other is already predetermined in clusters. Nanocluster deposition offers a possibility for the coating of virtually any material with a nanostructured thin film, and therein the enhancement of already existing physical or chemical properties, or the addition of some exciting new feature. A clearer understanding of cluster-surface interactions, and the growth of thin films by cluster deposition, must, however, be achieved, if clusters are to be successfully used in thin film technologies. Using a combination of experimental techniques and molecular dynamics simulations, both the deposition of nanoclusters, and the growth and modification of cluster-assembled thin films, are studied in this thesis. Emphasis is laid on an understanding of the interaction between metal clusters and surfaces, and therein the behaviour of these clusters during deposition and thin film growth. The behaviour of single metal clusters, as they impact on clean metal surfaces, is analysed in detail, from which it is shown that there exists a cluster size and deposition energy dependent limit, below which epitaxial alignment occurs. If larger clusters are deposited at low energies, or cluster-surface interactions are weaker, non-epitaxial deposition will take place, resulting in the formation of nanocrystalline structures. The effect of cluster size and deposition energy on the morphology of cluster-assembled thin films is also determined, from which it is shown that nanocrystalline cluster-assembled films will be porous. Modification of these thin films, with the purpose of enhancing their mechanical properties and durability, without destroying their nanostructure, is presented. Irradiation with heavy ions is introduced as a feasible method for increasing the density, and therein the mechanical stability, of cluster-assembled thin films, without critically destroying their nanocrystalline properties. The results of this thesis demonstrate that nanocluster deposition is a suitable technique for the growth of nanostructured thin films. The interactions between nanoclusters and their supporting surfaces must, however, be carefully considered, if a controlled growth of cluster-assembled thin films, with precisely tailored properties, is to be achieved.
Resumo:
WO3 nanoplate arrays with (002) oriented facets grown on fluorine doped SnO2 (FTO) glass substrates are tailored by tuning the precursor solution via a facile hydrothermal method. A 2-step hydrothermal method leads to the preferential growth of WO3 film with enriched (002) facets, which exhibits extraordinary photoelectrochemical (PEC) performance with a remarkable photocurrent density of 3.7 mA cm–2 at 1.23 V vs. revisable hydrogen electrode (RHE) under AM 1.5 G illumination without the use of any cocatalyst, corresponding to ~93% of the theoretical photocurrent of WO3. Density functional theory (DFT) calculations together with experimental studies reveal that the enhanced photocatalytic activity and better photo-stability of the WO3 films are attributed to the synergistic effect of highly reactive (002) facet and nanoplate structure which facilitates the photo–induced charge carrier separation and suppresses the formation of peroxo-species. Without the use of oxygen evolution cocatalysts, the excellent PEC performance, demonstrated in this work, by simply tuning crystal facets and nanostructure of pristine WO3 films may open up new opportunities in designing high performance photoanodes for PEC water splitting.
Resumo:
Tin monosulfide (SnS) films with varying distance between the source and substrate (DSS) were prepared by the thermal evaporation technique at a temperature of 300 degrees C to investigate the effect of the DSS on the physical properties. The physical properties of the as-deposited films are strongly influenced by the variation of DSS. The thickness, Sn to S at.% ratio, grain size, and root mean square (rms) roughness of the films decreased with the increase of DSS. The films grown at DSS = 10 and 15 cm exhibited nearly single-crystalline nature with low electrical resistivity. From Hall-effect measurements, it is observed that the films grown at DSS <= 15 cm have p-type conduction and the films grown at higher distances have n-type conduction due to the variation of the Sn/S ratio. The films grown at DSS = 15 cm showed higher optical band gap of 1.36 eV as compared with the films grown at other distances. The effect of the DSS on the physical properties of SnS films is discussed and reported.
Resumo:
In this paper we employ the phenomenon of bending deformation induced transport of cations via the polymer chains in the thickness direction of an electro-active polymer (EAP)-metal composite thin film for mechanical energy harvesting. While EAPs have been applied in the past in actuators and artificial muscles, promising applications of such materials in hydrodynamic and vibratory energy harvesting are reported in this paper. For this, functionalization of EAPs with metal electrodes is the key factor in improving the energy harvesting efficiency. Unlike Pt-based electrodes, Ag-based electrodes have been deposited on an EAP membrane made of Nafion. The developed ionic metal polymer composite (IPMC) membrane is subjected to a dynamic bending load, hydrodynamically, and evaluated for the voltage generated against an external electrical load. An increase of a few orders of magnitude has been observed in the harvested energy density and power density in air, deionized water and in electrolyte solutions with varying concentrations of sodium chloride (NaCl) as compared to Pt-based IPMC performances reported in the published literature. This will have potential applications in hydrodynamic and residual environmental energy harvesting to power sensors and actuators based on micro-andn nano-electro-mechanical systems (MEMS and NEMS) for biomedical,maerospace and oceanic applications.
Resumo:
The optical properties of Bi(2)V(1-x)MnxO(5.5-x) (x=0.05, 0.1, 0.15 and 0.2 at.%) thin films fabricated by pulsed laser deposition on platinized Silicon Substrates were Studied in UV-visible spectral region (1.51-4.17 CV) using spectroscopic ellipsometry. The optical constants and thicknesses of these films have been obtained by fitting the ellipsometric data (Psi and Delta) using a multilayer four-phase model system and a relaxed Lorentz oscillator dispersion relation. The surface roughness and film thickness obtained by spectroscopic ellipsometry were found to be consistent with the results obtained by atomic force and scanning electron microscopy. The refractive index measured at 650 nm does not show any marginal increase with Mn content. Further, the extinction coefficient does not show much decrease with increasing Mn content. An increase in optical band gap energy from 2.52 to 2.77 eV with increasing Mn Content from x = 0.05 to 0.15 was attributed to the increase in oxygen ion vacancy disorder. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Fabrication of single-component multilayer thin films still remains a challenging task via the layer-by-layer (LbL) approach. In this communication, we report the self-assembly of single-component multilayer thin films on flat and colloidal substrates through glutaraldehyde mediated covalent bonding.