962 resultados para Praseodymium ions
Resumo:
A commercially available coconut-shell-derived active carbon was oxidized with nitric acid, and both the original and oxidized active carbons were treated with ammonia at 1073 K to incorporate nitrogen functional groups into the carbon. An active carbon with very high nitrogen content (similar to9.4 wt % daf) was also prepared from a nitrogen-rich precursor, polyacrylonitrile (PAN). These nitrogen-rich carbons had points of zero charge (pH(pzc)) similar to H-type active carbons. X-ray absorption near-edge structure (XANES) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and temperature-programmed desorption (TPD) were used to characterize the nitrogen functional groups in the carbons. The nitrogen functional groups present on the carbon surface were pyridinic, pyrrolic (or indolic), and pyridonic structures. The adsorption of transition metal cations Cd2+, Ni2+, and Cu2+ from aqueous solution on the suite of active carbons showed that adsorption was markedly higher for carbons with nitrogen functional groups present on the surface than for carbons with similar pH(pzc) values. In contrast, the adsorption characteristics of Ca2+ from aqueous solution were similar for all the carbons studied. Flow microcalorimetry (FMC) studies showed that the enthalpies of adsorption of Cd2+(aq) on the active carbons with high nitrogen contents were much higher than for nitric acid oxidized carbons studied previously, which also had enhanced adsorption characteristics for metal ion species. The enthalpies of adsorption of Cu2+ were similar to those obtained for Cd2+ for specific active carbons. The nitrogen functional groups in the carbons act as surface coordination sites for the adsorption of transition metal ions from aqueous solution. The adsorption characteristics of these carbons are compared with those of oxidized carbons.
Resumo:
We report on the absolute calibration of a microchannel plate (MCP) detector, used in conjunction with a Thomson parabola spectrometer. The calibration delivers the relation between a registered count numbers in the CCD camera (on which the MCP phosphor screen is imaged) and the number of ions incident on MCP. The particle response of the MCP is evaluated for positive, negative, and neutral particles at energies below 1 MeV. As the response of MCP depends on the energy and the species of the ions, the calibration is fundamental for the correct interpretation of the experimental results. The calibration method and arrangement exploits the unique emission symmetry of a specific source of fast ions and atoms driven by a high power laser.
Resumo:
The potential that laser based particle accelerators offer to solve sizing and cost issues arising with conventional proton therapy has generated great interest in the understanding and development of laser ion acceleration, and in investigating the radiobiological effects induced by laser accelerated ions. Laser-driven ions are produced in bursts of ultra-short duration resulting in ultra-high dose rates, and an investigation at Queen's University Belfast was carried out to investigate this virtually unexplored regime of cell rdaiobiology. This employed the TARANIS terawatt laser producing protons in the MeV range for proton irradiation, with dose rates exceeding 10 Gys on a single exposure. A clonogenic assay was implemented to analyse the biological effect of proton irradiation on V79 cells, which, when compared to data obtained with the same cell line irradiated with conventionally accelerated protons, was found to show no significant difference. A Relative Biological effectiveness of 1.4±0.2 at 10 % Survival Fraction was estimated from a comparison with a 225 kVp X-ray source. © 2013 SPIE.
Resumo:
Ion-beam irradiation provides a promising treatment for some types of cancer. This promise is due mainly to the selective deposition of energy into a relatively small volume (the Bragg peak), thus reducing damage to healthy tissue. Recent observations that electrons with energies below the ionization potential of DNA can cause covalent damage to the bases and backbone have led to investigations into the ability of low-energy (
Resumo:
Diazacoronand 2 undergoes drastic conformational switching upon binding sodium ions as demonstrated by solution- and solid-state studies, which permit the design of efficient fluorescent PET (photoinduced electron transfer) switches 3a,b.
Resumo:
Diagrammatic many-body theory is used to calculate the scattering phase shifts, normalized annihilation rates Zeff, and annihilation ? spectra for positron collisions with the hydrogenlike ions He+, Li2+, B4+, and F8+. Short-range electron-positron correlations and longer-range positron-ion correlations are accounted for by evaluating nonlocal corrections to the annihilation vertex and the exact positron self-energy. The numerical calculation of the many-body theory diagrams is performed using B-spline basis sets. To elucidate the role of the positron-ion repulsion, the annihilation rate is also estimated analytically in the Coulomb-Born approximation. It is found that the energy dependence and magnitude of Zeff are governed by the Gamow factor that characterizes the suppression of the positron wave function near the ion. For all of the H-like ions, the correlation enhancement of the annihilation rate is found to be predominantly due to corrections to the annihilation vertex, while the corrections to the positron wave function play only a minor role. Results of the calculations for s-, p-, and d-wave incident positrons of energies up to the positronium-formation threshold are presented. Where comparison is possible, our values are in excellent agreement with the results obtained using other, e.g., variational, methods. The annihilation-vertex enhancement factors obtained in the present calculations are found to scale approximately as 1+(1.6+0.46l)/Zi, where Zi is the net charge of the ion and l is the positron orbital angular momentum. Our results for positron annihilation in H-like ions provide insights into the problem of positron annihilation with core electrons in atoms and condensed matter systems, which have similar binding energies.
Resumo:
The measurements reported here provide scaling laws for the ion acceleration process in the regime of ultrashort (50 fs), ultrahigh contrast (10) and ultrahigh intensity (> 10W/cm ), never investigated previously. The scaling of the accelerated ion energies was studied by varying a number of parameters such as target thickness (down to 10nm), target material (C and Al) and laser light polar- ization (circular and linear) at 35° and normal laser incidence. A twofold increase in proton energy and an order of magnitude enhancement in ion flux have been observed over the investigated thickness range at 35° angle of incidence. Further- more, at normal laser incidence, measured peak proton energies of about 20 MeV are observed almost independently of the target thickness over a wide range (50nm- 10 µm). 1. © 2012 by Società Italiana di Fisica.
Resumo:
The acceleration of ions with high-power lasers has been a very active field of research during the past 10 years. This paper summarizes the main results obtained in the field, detailing the mechanisms of the acceleration process and the main observed beam characteristics. Perspectives for future development of the field and current and future applications are also discussed. © 2012 by Società Italiana di Fisica.
Resumo:
The scenario of electron capture and loss has been recently proposed for the formation of negative ion and neutral atom beams with up to MeV kinetic energy [S. Ter-Avetisyan, Appl. Phys. Lett. 99, 051501 (2011)]. Validation of these processes and of their generic nature is here provided in experiments where the ion source and the interaction medium have been spatially separated. Fast positive ions accelerated from a laser plasma source are sent through a cold spray where their charge is changed. Such formed neutral atom or negative ion has nearly the same momentum as the original positive ion. Experiments are released for protons, carbon, and oxygen ions and corresponding beams of negative ions and neutral atoms have been obtained. The electron capture and loss phenomenon is confirmed to be the origin of the negative ion and neutral atom beams. The equilibrium ratios of different charge components and cross sections have been measured. Our method is general and allows the creation of beams of neutral atoms and negative ions for different species which inherit the characteristics of the positive ion source.
Resumo:
We present a first principles molecular dynamics (FPMD) study of the interaction of low energy, positively charged, carbon (C+) projectiles with amorphous solid water clusters at 30 K. Reactions involving the carbon ion at an initial energy of 11 eV and 1.7 eV with 30-molecule clusters have been investigated. Simulations indicate that the neutral isoformyl radical, COH, and carbon monoxide, CO, are the dominant products of these reactions. All these reactions are accompanied by the transfer of a proton from the reacting water molecule to the ice, where it forms a hydronium ion. We find that COH is formed either via a direct, "knock-out", mechanism following the impact of the C+ projectile upon a water molecule or by creation of a COH_2^+ intermediate. The direct mechanism is more prominent at higher energies. CO is generally produced following the dissociation of COH. More frequent production of the formyl radical, HCO, is observed here than in gas phase calculations. A less commonly occurring product is the dihydroxymethyl, CH(OH)_2, radical. Although a minor result, its existence gives an indication of the increasing chemical complexity which is possible in such heterogeneous environments.
Resumo:
The R-matrix method describing the scattering of low-energy electrons by complex atoms and ions is extended to include terms of the Breit-Pauli Hamiltonian. An application is made to the astrophysically important 1s 2s S-1s 2s2p P transition in Fe XXIII, where in the most accurate calculations carried out all terms of the 1s 2s, 1s2s2p and 1s2p configurations are included in the expansion describing the collision. This gives up to 28 coupled channels for each total angular momentum and parity which are solved on a CRAY-1. The collision strengths are increased by more than a factor of two from their non-relativistic values at all energies considered.
Resumo:
In this work we report on the evaluation of electron-impact collision strengths and Maxwellian averaged effective collision strengths for the lowly-ionized Fe-peak elements Sc II and Ti II using the parallel R-matrix package RMATRX II.