980 resultados para Powders: solid state reaction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The layered cobaltite Ca2.6Nd0.4Co4O9 was synthesized by the solid-state reaction. Their crystal structure was determined by the X-ray powder diffraction and CELL program. The prepared Ca2.6Nd0.4Co4O9 compound has the monoclinic symmetry. The electrical conductivity and Seebeck coefficient were measured from room temperature to 700 degreesC in air. Both the properties increase while rising temperature. The thermoelectric power of Ca2.6Nd0.4Co4O9 is about 242.4 muV (.) K-1. The results imply a promising way to enhance the thermoelectric properties of the layered cobaltite oxides by optimizing their composition and microstructure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neodymium-cerium oxide (Nd2Ce2O7) was proposed as a new thermal barrier coating material in this work. Monolithic Nd2Ce2O7 powder was prepared by the solid-state reaction at 1400 degrees C. The phase composition, thermal stability and thermophysical properties of Nd2Ce2O7 were investigated. Nd2Ce2O7 with fluorite structure was thermally stable in the temperature range of interest for TBC applications. The results indicated that the thermal expansion coefficient (TEC) of Nd2Ce2O7 was higher than that of YSZ (6-8 Wt-% Y2O3 + ZrO2) and even more interesting was the TEC change as a function of temperature paralleling that of the superalloy bond coat. Moreover, the thermal conductivity of Nd2Ce2O7 is 30% lower than that of YSZ, which was discussed based on the theory of heat conduction. Thermal barrier coating of Nd2Ce2O7 was produced by atmospheric plasma spraying (APS) using the spray-dried powder. The thermal cycling was performed with a gas burner test facility to examine the thermal stability of the as-prepared coating.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New series of oxides, La3MMo2O12 (M = In, Ga and Al), have been prepared by the solid-state reaction. The composition and elemental distribution were analyzed by the energy-dispersive X-ray (EDX) analysis. As determined by the X-ray diffraction (XRD), these compounds have similar crystal structures that can be indexed on a monoclinic cell at room temperature. AC impedance spectra and the DC electrical conductivity measurements in various atmospheres indicate that they are oxide ion conductors with ionic conductivities between 10(-2) and 10(-3) S/cm at 800 degrees C. The conductivity decreases in the order of La3GaMo2O12 > La3AlMo2O12 > La3InMo2O12, implying that the effect of cell volume and polarization associated with In3+, Ga3+ and Al3+ play an important role in the anion transport of these materials. The reversible phase transition was observed in all these compounds as confirmed by the differential thermal analysis (DTA) and dilatometric measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of La2O3-ZrO2-CeO2 composite oxides were synthesized by solid-state reaction. The final product keeps fluorite structure when the molar ratio Ce/Zr >= 0.7/0.3, and below this ratio only mixtures of La2Zr2O7 (pyrochlore) and La2O3-CeO2 (fluorite) exist. Averagely speaking, the increase of CeO2 content gives rise to the increase of thermal expansion coefficient and the reduction of thermal conductivity, but La-2(Zr0.7Ce0.3)(2)O-7 has the lowest sintering ability and the lowest thermal conductivity which could be explained by the theory of phonon scattering. Based on the large thermal expansion coefficient of La2Ce3.25O9.5, the low thermal conductivities and low sintering abilities of La2Zr2O7 and La-2(Zr0.7Ce0.3)(2)O-7, double-ceramic-layer thermal barrier coatings were prepared. The thermal cycling tests indicate that such a design can largely improve the thermal cycling lives of the coatings. Since no single material that has been studied so far satisfies all the requirements for high temperature thermal barrier coatings, double-ceramic-layer coating may be an important development direction of thermal barrier coatings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calcium lanthanide oxyborate doped with rare-earth ions LnCa(4)O(BO3)(3):RE3+ (LnCOB:RE, Ln = Y, La, Gd, RE = Eu, Tb, Dy, Cc) was synthesized by the method of solid-state reaction at high temperature. Their fluorescent spectra were measured from vacuum ultraviolet (VUV) to visible region at room temperature. Their excitation spectra all have a broadband center at about 188 nm, which is ascribed to host absorption. Using Dorenbos' and J phi rgensen's work [P. Dorenbos, J. Lumin. 91 (2000) 91, R. Resfeld, C.K. J phi rgensen. Lasers and Excite States of Rare Earth [M], Springer, Berlin, 1977, p. 45], the position of the lowest 5d levels E(Ln,A) and charge transfer band E-ct were calculated and compared with their excitation spectra.Eu3+ and Tb3+ ions doped into LnCOB show efficient luminescence under VUV and UV irradiation. In this system, Ce3+ ions do not show efficient luminescence and quench the luminescence of Tb3+ ions when Tb3+ and Ce3+ ions are co-doped into LnCOB. GdCOB doped with Dy3+ shows yellowish white light under irradiation of 254 nm light for the reason that Gd ions transfer the energy from itself to Dy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Sr2Mg(BO3)(2) phosphors doped respectively with Tm3+, Tb3+ and Dy3+ as activator were prepared by high temperature solid-state reaction. All the thermo luminescence curves of the phosphors consisted of two isolated peaks and the Dy3+ activated sample exhibited the strongest thermo luminescence intensity. The kinetic parameters of the thermoluminescence of Sr2Mg(BO3)(2):0.04 Dy were calculated employing the peak shape method and 3 dimensional thermo luminescent emission spectra were observed peaking at 480, 579, 662 and 755 nm due to the characteristic transition of Dy3+. In addition, the pre-irradiation heat-treatment and the thermoluminescence dose response of Sr2Mg(BO3)(2):0.04 Dy were investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new oxide ion conductor, La3GaMo2O12, with a bulk conductivity of 2.7 X 10(-2) S.cm(-1) at 800 degrees C in air atmosphere was prepared by the traditional solid-state reaction. The room temperature X-ray diffraction data could be indexed on a monoclinic cell with lattice parameters of a=0.5602(2) nm, b=0.3224(1) nm, c= 1.5741(1) nm, beta= 102.555(0)degrees, V=0.2775(2) nm(3) and space group Pc(7). Ac impedance measurements in various atmospheres further support that it is an oxide ion conductor. This material was stable in various atmospheres with oxygen partial pressure P(O-2) ranging from 1.0 X 10(5) to 1.0 X 10(-7) Pa at 800 degrees C. A reversible polymorphic phase transition occurred at elevated temperatures as confirmed by the differential thermal analysis and dilatometric measurement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

(Y, Gd) BO3:Eu3+ particles coated with nano-hematite were prepared by a facile method I for example (humid) solid phase reaction at room temperature. The resulted hematite-coated (Y, Gd)BO3:Eu3+ particles were characterized by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) analysis, X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), and photoluminescence spectra (PL). The SEM and EDS analyses indicate that the particles are coated with a very thin layer of iron oxide. XPS results further confirmed that the coating was hematite, and the coating thickness was in nanometer range. XRD patterns showed that either the hematite coating was too thin or the content of hematite was too small, so that the XRD cannot detect it. The emission spectra illustrate that the peak near 580 nm disappears due to the coating of iron oxide, and when the coating is very thin, the ratio of D-5(0)-> F-7(2) to D-5(2)-> F-7(1) of coated particles is higher than that of uncoated ones, which indicates that the color purity of the phosphor is increased by coating nano-hematite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reduction of Eu3+ to Eu2+ in air has been observed in a silicate matrix for the first time in BaMgSiO4:Eu prepared by high-temperature solid-state reaction. Emission and excitation spectra were employed to detect the presence of Eu2+ ions in the compound and this reduction was explained by a charge compensation model proposed previously. In BaMgSiO4 : Eu2+, Eu2+ ions occupy three different lattice sites by substitution for Ba2+ ions. Eu2+ ions on Ba(1) and Ba(2) sites gave emissions at about 500 nm while that on Ba(3) site showed an emission band at 398 nm. All the emissions of Eu2+ ions in BaMgSiO4 : Eu2+ were not quenched at room temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compounds of Sr4Al14O15: Eu were prepared in air atmosphere by high temperature solid state reaction. The reduction of Eu3+--> Eu2+ was firstly observed in the aluminate phosphor of Sr4Al14O25: Eu synthesized in air condition. This made aluminate a new family and Sr4Al14O25 a new member of compounds in which Eu3+ ion could be reduced to Eu2+ form when fired in air atmosphere. The reduction of Eu3+ --> Eu2+ in Sr4Al14O25: Eu was explained by means of a charge compensation model. Experiments based on the model were designed and carried out, and the results supported this model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper for the first time the compounds Y0.5-xLi1.5VO4:(Dy3+, Eu3+),(YLV:Dy,Eu) (0.01solid state reaction. The temperature to synthesize YLV:Dy,Eu is about 600 degreesC and 400 degreesC lower than that to synthesize rare earth vanadates. Their structures were analyzed by X-ray powder diffraction experiment. The excitation and emission spectra were measured at room temperature. The blue, the yellow and the red emission from the F-4(9/2)-H-6(15/2) (474.2-484.2 nm) transitions and F-4(9/2)-H-6(13/2) (568-576.4 nm) transitions of Dy3+ and the D-5(0)-F-7(2) (608-619.2 nm) transitions of Eu3+, respectively, are very strong in multiwavelength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The VUV-UV spectra of rare earth ions activated calcium borophosphate, CaBPO5:RE (RE = Ce3+, sm(3+), Eu2+, Eu3+, Tb3+ and Dy3+) were determined. The bands at about 155 nm in the VUV excitation spectra are attributed to the host lattice absorptions. The bands at 166 and 190 nm for the sample CaBPO5:Sm have been considered as related to the f-d transition and the charge transfer band (CTB) of Sm3+ ions, and the band at 169 nm for the sample CaBPO5:Dy is assumed to be connected with the f-d transition of the Dy3+ ions in CaBPO5. The partial reduction of Eu3+ CaBPO5:Eu prepared by high temperature solid state reaction in air is confirmed by the VUV-UV spectra.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The high-resolution luminescent spectrum of divalent samarium excited by 355 nm UV light at 77 K, the VUV excitation spectra, the VUV excited emission spectra and EXAFS at Sm-L-3 edge were reported for samarium doped strontium borophosphate, SrBPO5:Sm prepared by solid state reaction in air at high temperature. The high-resolution luminescent spectrum showed that the divalent samarium ions occupied the C-2upsilon lattice sites. The VUV excitation spectra indicated that the sample exhibited absorption bands with the maxima at 129 and 148 nm, respectively. The performance of EXAFS at Sm-L3 absorption edge suggested that the samarium ions were nine-coordinated and the mean distances of bond Sm-O were 2.38 Angstrom.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

VUV-UV and Eu-L-3 edge XANES spectra were measured for europium-doped strontium tetraborate prepared by solid state reaction at high temperature in air. The VUV-UV spectra show that the host absorption band of (SrBO7)-O-4 appears below 170 nm. The charge transfer band of Eu3+ doped in SrB4O7 is peaked at 272 nm. The 4f-5d transitions of Eu2+ consist of a band peaked at 310 nm with a shoulder at 280 nm and also include the bands peaked at 238 (weak) and 203 (strong) nm. The result of XANES spectrum at Eu-L3 edge of the synthesized sample indicates that Eu3+ and Eu2+ coexist in SrB4O7:Eu prepared in air, which is consistent with the results of the VUV-UV spectra.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A distorted layered perovskite compound BaTb2Mn2O7 was synthesized by the solid state reaction in pure argon. There is a structural phase transition in the BaTb2Mn2O7 compound. The phase transition was characterized by the DSC and high temperature Xray diffraction. The heat capacity of BaTb2Mn2O7 was calculated. The thermal anomaly corresponding to the phase transition was observed at about 740K. The lattice parameters were calculated by the CELL program for BaTb2Mn2O7, It has Tb-type orthorhombic symmetry with a = 0.3908 nm, b = 0.3866 nm, c = 2.0163 nm, and space group Immm at room temperature. With the increase of temperature, the lattice parameters gradually increase until 673K. From 723K to 973K, the compound translates to tetragonal with a = 0.39078 nm, c = 2.0277 nm and S.G. I4/mmm. This result is fairly in accordance with that of heat capacity.