934 resultados para Pore-size Distributions
Resumo:
The literature relating to haze formation, methods of separation, coalescence mechanisms, and models by which droplets <100 μm are collected, coalesced and transferred, have been reviewed with particular reference to particulate bed coalescers. The separation of secondary oil-water dispersions was studied experimentally using packed beds of monosized glass ballotini particles. The variables investigated were superficial velocity, bed depth, particle size, and the phase ratio and drop size distribution of inlet secondary dispersion. A modified pump loop was used to generate secondary dispersions of toluene or Clairsol 350 in water with phase ratios between 0.5-6.0 v/v%.Inlet drop size distributions were determined using a Malvern Particle Size Analyser;effluent, coalesced droplets were sized by photography. Single phase flow pressure drop data were correlated by means of a Carman-Kozeny type equation. Correlations were obtained relating single and two phase pressure drops, as (ΔP2/μc)/ΔP1/μd) = kp Ua Lb dcc dpd Cine A flow equation was derived to correlate the two phase pressure drop data as, ΔP2/(ρcU2) = 8.64*107 [dc/D]-0.27 [L/D]0.71 [dp/D]-0.17 [NRe]1.5 [e1]-0.14 [Cin]0.26 In a comparison between functions to characterise the inlet drop size distributions a modification of the Weibull function provided the best fit of experimental data. The general mean drop diameter was correlated by: q_p q_p p_q /β Γ ((q-3/β) +1) d qp = d fr .α Γ ((P-3/β +1 The measured and predicted mean inlet drop diameters agreed within ±15%. Secondary dispersion separation depends largely upon drop capture within a bed. A theoretical analysis of drop capture mechanisms in this work indicated that indirect interception and London-van der Waal's mechanisms predominate. Mathematical models of dispersed phase concentration m the bed were developed by considering drop motion to be analogous to molecular diffusion.The number of possible channels in a bed was predicted from a model in which the pores comprised randomly-interconnected passage-ways between adjacent packing elements and axial flow occured in cylinders on an equilateral triangular pitch. An expression was derived for length of service channels in a queuing system leading to the prediction of filter coefficients. The insight provided into the mechanisms of drop collection and travel, and the correlations of operating parameters, should assist design of industrial particulate bed coalescers.
Resumo:
The literature relating to sieve plate liquid extraction columns and relevant hydrodynamic phenomena have been surveyed. Mass transfer characteristics during drop formation, rise and coalescence, and related models were also reviewed. Important design parameters i.e. flooding, dispersed phase hold-up, drop size distribution, mean drop size, coalescence/flocculation zone height beneath a plate and jetting phenomena were investigated under non-mass transfer and mass transfer conditions in a 0.45m diameter, 2.3m high sieve plate column. This column had provision for four different plate designs, and variable plate spacing and downcomer heights, and the system used was Clairsol `350' (dispersed) - acetone - deionised water (continuous) with either direction of mass transfer. Drop size distributions were best described by the functions proposed by Gal-or, and then Mugele-Evans. Using data from this study and the literature, correlations were developed for dispersed phase hold-up, mean drop size in the preferred jetting regime and in the non-jetting regime, and coalescence zone height. A method to calculate the theoretical overall mass transfer coefficient allowing for the range of drop sizes encountered in the column gave the best fit to experimental data. This applied the drop size distribution diagram to estimate the volume percentage of stagnant, circulating and oscillating drops in the drop population. The overall coefficient Kcal was then calculated as the fractional sum of the predicted individual single drop coefficients and their proportion in the drop population. In a comparison between the experimental and calculated overall mass transfer coefficients for cases in which all the drops were in the oscillating regime (i.e. 6.35mm hole size plate), and for transfer from the dispersed(d) to continuous(c) phase, the film coefficient kd predicted from the Rose-Kintner correlation together with kc from that of Garner-Tayeban gave the best representation. Droplets from the 3.175mm hole size plate, were of a size to be mainly circulating and oscillating; a combination of kd from the Kronig-Brink (circulating) and Rose-Kintner (oscillating) correlations with the respective kc gave the best agreement. The optimum operating conditions for the SPC were identified and a procedure proposed for design from basic single drop data.
Resumo:
The aim of this work was to gain a better understanding of the physiochemical factors which affect the formulation of suspension inhalation aerosols. This has been attempted by applying the principles of colloid science to aerosol formulation. Both a drug system and a model colloid system have been used. The adsorption of six nonionic and cationic surfactants onto Spherisorb has been investigated. The results were analysed by calculating the area occupied by one adsorbed molecule at the surface and by comparing these values for each surfactant. The amount of each surfactant adsorbed was correlated with the number of sites on that surfactant molecule which could interact with the surface. The stability of suspensions, produced by both the model colloid Spherisorb, and by the drug isoprenaline sulphate, after adsorption of the surfactants, has been assessed by measuring settling times and rising times. The most stable suspensions were found to be those which had the greatest amounts of long chain fatty acid surfactant adsorbed on their surface. A comparison was made between the effective stabilising properties of Span 85 and oleic acid on various drug suspensions. It was found that Span 85 gave the most stable suspensions. Inhalation aerosol suspensions of isoprenaline sulphate were manufactured using the same surfactants used in the adsorption and suspension stability studies and were analysed by measuring the particle size distributions of the suspension and the emitted doses. The results were found to correlate with the adsorption and suspension stability studies and it was concluded that a deflocculated suspension was preferable to a flocculated suspension in inhalation aerosols provided that the drug density was less than the propellant density. The application of this work to preformulation studies was also discussed.
Resumo:
An investigation was undertaken to study the effect of poor curing simulating hot climatic conditions and remedies on the durability of steel in concrete. Three different curing environments were used i.e. (1) Saturated Ca(OH)2 solution at 20°C, (2) Saturated Ca(OH)2 solution at 50°C and (3) Air at 50°C at 30% relative humidity. The third curing condition corresponding to the temperature and relative humidity typical of Middle Eastern Countries. The nature of the hardened cement paste matrix, cured under the above conditions was studied by means of Mercury Intrusion Porosimetry for measuring pore size distribution. The results were represented as total pore volume and initial pore entry diameter. The Scanning Electron Microscope was used to look at morphological changes during hydration, which were compared to the Mercury Intrusion Porosimetry results. X-ray defraction and Differential Thermal Analysis techniques were also employed for looking at any phase transformations. Polymer impregnation was used to reduce the porosity of the hardened cement pastes, especially in the case of the poorly cured samples. Carbonation rates of unimpregnated and impregnated cements were determined. Chloride diffusion studies were also undertaken to establish the effect of polymer impregnation and blending of the cements. Finally the corrosion behaviour of embedded steel bars was determined by the technique of Linear Polarisation. The steel was embedded in both untreated and polymer impregnated hardened cement pastes placed in either a solution containing NaCl or an environmental cabinet which provided carbonation at 40°C and 50% relative humidity.
Resumo:
Polymer modified cements and mortars have become popular for use as patch repair materials. General evidence suggests that these materials offer considerable improvements compared to traditional mortars although the mechanisms for this are not fully understood. This work elucidates the factors which govern some properties and performance of different polymer systems. In view of the wide range of commercial systems available, investigations concentrated on the use of three of the most commonly available groups of polymers. These were: (1) Styrene Butadiene Rubber (SBR), (2) Acrylics and, (3) Ethylene Vinyl Acetates (EVA). The later two were in the form of both emulsions and redispersible powders. Experiments concentrated on: (1) Rheological behaviour of polymer modified cement pastes; (2) Workability of polymer modified mortars; (3) Influence of curing conditions on the pore size distribution and diffusion of chloride ions; (4) Bond strength of polymer modified cement and mortar patches; and (5) Microscopic examination and semi-quantitative analyses of the bulk and interfacial microstructures. The following main conclusions were reached: (1) The addition of polymer emulsions have a considerable influence on the workability of fresh cement pastes, the extent of this depending on the type of system used. (2) The rheological parameters of fresh polymer modified mortars can be established using a two-point workability test which may be used when comparing the properties of different systems at constant workability. (3) Curing conditions affect the properties of polymer modified systems and a wet/dry curing regime was essential for good adhesion of these materials to mortar substrates. (4) In contrast, the wet/dry curing regime resulted in a curing affected zone at the surface of patch materials. This can result in a much coarser pore structure and enhanced diffusion of e.g. chloride ions. (5) The microstructure of polymer modified systems was very different compared with the unmodified cement/mortar and varied depending on curing conditions.
Resumo:
This thesis reports on the development of a technique to evaluate hydraulic conductivities in a soil (Snowcal) subject to freezing conditions. The technique draws on three distinctly different disciplines, Nuclear Physics, Soil Physics and Remote Sensing to provide a non-destructive and reliable evaluation of hydraulic conductivity throughout a freezing test. Thermal neutron radiography is used to provide information on local water/ice contents at anytime throughout the test. The experimental test rig is designed so that the soil matrix can be radiated by a neutron beam, from a nuclear reactor, to obtain radiographs. The radiographs can then be interpreted, following a process of remote sensing image enhancement, to yield information on relative water/ice contents. Interpretation of the radiographs is accommodated using image analysis equipment capable of distinguishing between 256 shades of grey. Remote sensing image enhancing techniques are then employed to develop false colour images which show the movement of water and development of ice lenses in the soil. Instrumentation is incorporated in the soil in the form of psychrometer/thermocouples, to record water potential, electrical resistance probes to enable ice and water to be differentiated on the radiographs and thermocouples to record the temperature gradient. Water content determinations are made from the enhanced images and plotted against potential measurements to provide the moisture characteristic for the soil. With relevant mathematical theory pore water distributions are obtained and combined with water content data to give hydraulic conductivities. The values for hydraulic conductivity in the saturated soil and at the frozen fringe are compared with established values for silts and silty-sands. The values are in general agreement and, with refinement, this non-destructive technique could afford useful information on a whole range of soils. The technique is of value over other methods because ice lenses are actually seen forming in the soil, supporting the accepted theories of frost action. There are economic and experimental restraints to the work which are associated with the use of a nuclear facility, however, the technique is versatile and has been applied to the study of moisture transfer in porous building materials and could be further developed into other research areas.
Resumo:
The Sherwood Sandstone Group forms an important aquifer in Eastern England, which in North Nottinghamshire comprises the Nottingham Castle and Lenton Sandstone Formations. The aquifer is formed by an alluvial red-bed sequence dominated by medium-coarse grained sandstones which are texturally immature to submature and have only been subjected to shallow burial diagenesis. These sandstones reached the mature stage of the meso diagenetic regime, and four stages are recognized in their diagenetic history depending upon the physical/chemical processes prevailing and the subsequent effect on porosity and permeability. Stage "One" represents changes including dissolution of unstable silicates, clay replacement, red colouration and precipitation of authigenic minerals (quartz, feldspar, illite, l/S, kaolinite, dolomite, ferroan calcite, calcite). The net result of these changes was porosity reduction. Stage "Two" included changes due to mechanical compaction which resulted in minor porosity reduction. Stage "Three" was the main phase of secondary porosity enhancement. Stage "Four" represents changes taking place in the present groundwater where porosity and permeability may have been increased by dissolution and partly reduced by kaolinite precipitation. Porosity measured by water-resaturation and Hg-injection gave average values of 25.63% and 24.85% respectively. The results are comparable and showed marked correlation especially in highly porous/permeable rocks. Porosity measurements from photomicrographs were markedly offset from laboratory results. Horizontal Kw ranged between 1.43 x 10-5 and 1.13 x 10-1 mm/sec, with an average of 1.68 x 10-2 mm/sec. The estimated KHg ranged between 7.29 x 10-6 and 6.99 x 10-2 mm/sec with an average of 1.47 x 10-2 mm/sec. Both results are significantly correlated for highly porous/permeable rocks. The hydraulic properties are highly dependent upon the diagenetic properties (as most of the pores present are of secondary origin) as well as the pore size distribution. The chemistry of these groundwaters indicates that they are under-saturated with respect to dolomite, calcite, K-feldspar, l/S clay, and montmorillonite. The precipitation of kaolinite,and to a lesser extent illite, is favoured in the present groundwater regime.
Resumo:
The mechanisms involved in the production of chromate-phosphate conversion coatings on aluminium have been investigated. A sequence of coating nucleation and growth has been outlined and the principle roles of the constituent ingredients of the chromate-phosphate solution have been shown. The effect of dissolved aluminium has been studied and its role in producing sound conversion coatings has been shown. Metallic contamination has been found to have a dramatic influence on chromate-phosphate coatings when particular levels have been exceeded. Coating formation was seen to be affected in proportion to the level of contaminaton; no evidence of sudden failure was noted. The influence of substrate and the effect of an acidic cleaner prior to conversion coating have been studied and explained. It was found that the cleaner ages rapidly and that this must .be allowed for when attempting to reproduce industrial conditions in the laboratory. A study was carried out on the flowing characteristics of polyester powders of various size distributions as they melt using the hot-stage microscopy techniques developed at Aston. It was found that the condition of the substrate (ie extent of pretreatment), had a significant effect on particle flow. This was explained by considering the topography of the substrate surface. A number of 'low-bake' polyester powders were developed and tested for mechanical, physical and chemical resistance. The best formulation had overall properties which were as good as the standard polyester in many respects. However chemical resistance was found to be slightly lower. The charging characteristics of powder paints during application by means of electrostatic spraying was studied by measuring the charge per unit mass and relating this to the surface area. A high degree of correlation was found between charge carried and surface area, and the charge retained was related to the powder's formulation.
Resumo:
There is currently significant interest in particle-stabilized emulsions for a variety of applications and as precursors to other materials such as micro-capsules or colloidosomes. A prerequisite for many applications is the ability to produce stable droplets with a well-controlled size. The preparation of oil-in-water (o/w) emulsions stabilized by silica colloids has been demonstrated here using membrane ulsification techniques. Emulsions were produced using both a cross-flow membrane device and a rotating membrane reactor. Under the correct conditions, highly stable emulsions with very narrow droplet size distributions can be produced. Investigations into the effects of changing the cross-flow shear rate at a fixed droplet production rate illustrate the fine control over mean droplet size that is possible with these emulsification techniques. Evidence for the importance of particle adsorption kinetics onto growing droplets prior to detachment from the membrane surface was obtained by varying the droplet production rate under fixed shear conditions. The presence of a critical surface coverage by the stabilizing particles to prevent droplet coalescence was clearly seen. Comparison with samples produced using conventional high-shear homogenization highlights the improved control over size distribution available from these membrane techniques.
Resumo:
Crossflow and rotating membrane emulsification techniques were used for making oil-in-water (O/W) emulsions. The emulsions produced from a variety of oils and monomers (viscosity 7–528 mPas) exhibited narrow size distributions over a wide droplet size range, with the average droplet size ranging from less than 1 µm up to 500 µm. The monomer emulsions were further encapsulated to produce microcapsules through subsequent polymerisation reactions. The monodispersity feature of the primary emulsions was retained after the encapsulation. In comparison with other homogenisation methods, our experimental results demonstrated that the membrane emulsification technique is not only superior in emulsion droplet size controls, but also advantageous in energy efficiency and industrial-scale productions.
Resumo:
This paper presents a predictive aggregation rate model for spray fluidized bed melt granulation. The aggregation rate constant was derived from probability analysis of particle–droplet contact combined with time scale analysis of droplet solidification and granule–granule collision rates. The latter was obtained using the principles of kinetic theory of granular flow (KTGF). The predicted aggregation rate constants were validated by comparison with reported experimental data for a range of binder spray rate, binder droplet size and operating granulator temperature. The developed model is particularly useful for predicting particle size distributions and growth using population balance equations (PBEs).
Resumo:
Hierarchical macroporous-mesoporous SBA-15 silicas have been synthesised via dual-templating routes employing liquid crystalline surfactants and polystyrene beads. These offer high surface areas and well-defined, interconnecting macro- and mesopore networks with respective narrow size distributions around 300 nm and 3-5 nm for polystyrene:tetraethoxysilane ratios ≥2:1. Subsequent functionalisation with propylsulfonic acid yields the first organized, macro-mesoporous solid acid catalyst. The enhanced mass transport properties of these new bi-modal solid acid architectures confer significant rate enhancements in the transesterification of bulky glyceryl trioctanoate, and esterification of long chain palmitic acid, over pure mesoporous analogues. This paves the way to the wider application of hierarchical catalysts in biofuel synthesis and biomass conversion. © 2010 The Royal Society of Chemistry.
Resumo:
Tensile tests were carried out using specimens of 2009 aluminium alloy reinforced by either SiC whiskers or particles. The size distributions of the whiskers and particles in the matrix were obtained by image analysis. It was found that failure was a result of uniform void nucleation and coalescence in the as fabricated composites, or a result of fast crack propagation initiated by a flaw developed at clusters of SiC in the aged or stretched and aged composites. The strengths of the as fabricated composites were estimated based on the results of image analysis using continuum mechanics and dislocation theories. The estimation indicated that the tensile strengths are largely contributed to by composite strengthening, supplemented by residual dislocation strengthening and work hardening. Owing to the flaw controlled failure, the tensile strengths of the aged or stretched and aged composites were independent of aging time, aging temperature, and the amount of stretching. The elastic moduli of the composites were estimated using the Halpin-Tsai model and a good correlation was found between the measured and estimated moduli. © 1996 The Institute of Materials.
Resumo:
A simple and efficient route to prepare supported nanocrystalline oxides is presented. The synthesis procedure, i.e. in situ autocombustion of a glycine complex, allows the production of nanocrystals in a porous matrix presenting larger pore size. An example of successful formation of 2-5 nm nanocrystals is given for a single oxide (Fe2O3), a mixed-oxide structure (LaCoO3 perovskite-type) and a nickel-doped oxide. © 2011 The Royal Society of Chemistry.
Resumo:
Emulsions and microcapsules are typical structures in various dispersion formulations for pharmaceutical, food, personal and house care applications. Precise control over size and size distribution of emulsion droplets and microcapsules are important for effective use and delivery of active components and better product quality. Many emulsification technologies have been developed to meet different formulation and processing requirements. Among them, membrane and microfluidic emulsification as emerging technologies have the feature of being able to precisely manufacture droplets in a drop-by-drop manner to give subscribed sizes and size distributions with lower energy consumption. This paper reviews fundamental sciences and engineering aspects of emulsification, membrane and microfluidic emulsification technologies and their use for precision manufacture of emulsions for intensified processing. Generic application examples are given for single and double emulsions and microcapsules with different structure features. © 2013 The Society of Powder Technology Japan. Published by Elsevier B.V.