986 resultados para Plant morphology.
Resumo:
Intrinsically fuzzy morphological erosion and dilation are extended to a total of eight operations that have been formulated in terms of a single morphological operation--biased dilation. Based on the spatial coding of a fuzzy variable, a bidirectional projection concept is proposed. Thus, fuzzy logic operations, arithmetic operations, gray-scale dilation, and erosion for the extended intrinsically fuzzy morphological operations can be included in a unified algorithm with only biased dilation and fuzzy logic operations. To execute this image algebra approach we present a cellular two-layer processing architecture that consists of a biased dilation processor and a fuzzy logic processor. (C) 1996 Optical Society of America
Resumo:
A more powerful tool for binary image processing, i.e., logic-operated mathematical morphology (LOMM), is proposed. With LOMM the image and the structuring element (SE) are treated as binary logical variables, and the MULTIPLY between the image and the SE in correlation is replaced with 16 logical operations. A total of 12 LOMM operations are obtained. The optical implementation of LOMM is described. The application of LOMM and its experimental results are also presented. (C) 1999 Optical Society of America.
Resumo:
Fuzzy sets in the subject space are transformed to fuzzy solid sets in an increased object space on the basis of the development of the local umbra concept. Further, a counting transform is defined for reconstructing the fuzzy sets from the fuzzy solid sets, and the dilation and erosion operators in mathematical morphology are redefined in the fuzzy solid-set space. The algebraic structures of fuzzy solid sets can lead not only to fuzzy logic but also to arithmetic operations. Thus a fuzzy solid-set image algebra of two image transforms and five set operators is defined that can formulate binary and gray-scale morphological image-processing functions consisting of dilation, erosion, intersection, union, complement, addition, subtraction, and reflection in a unified form. A cellular set-logic array architecture is suggested for executing this image algebra. The optical implementation of the architecture, based on area coding of gray-scale values, is demonstrated. (C) 1995 Optical Society of America
Resumo:
Fuzzification is introduced into gray-scale mathematical morphology by using two-input one-output fuzzy rule-based inference systems. The fuzzy inferring dilation or erosion is defined from the approximate reasoning of the two consequences of a dilation or an erosion and an extended rank-order operation. The fuzzy inference systems with numbers of rules and fuzzy membership functions are further reduced to a simple fuzzy system formulated by only an exponential two-input one-output function. Such a one-function fuzzy inference system is able to approach complex fuzzy inference systems by using two specified parameters within it-a proportion to characterize the fuzzy degree and an exponent to depict the nonlinearity in the inferring. The proposed fuzzy inferring morphological operators tend to keep the object details comparable to the structuring element and to smooth the conventional morphological operations. Based on digital area coding of a gray-scale image, incoherently optical correlation for neighboring connection, and optical thresholding for rank-order operations, a fuzzy inference system can be realized optically in parallel. (C) 1996 Society of Photo-Optical Instrumentation Engineers.
A model for energy and morphology of crystalline grain boundaries with arbitrary geometric character
Resumo:
It has been well-established that interfaces in crystalline materials are key players in the mechanics of a variety of mesoscopic processes such as solidification, recrystallization, grain boundary migration, and severe plastic deformation. In particular, interfaces with complex morphologies have been observed to play a crucial role in many micromechanical phenomena such as grain boundary migration, stability, and twinning. Interfaces are a unique type of material defect in that they demonstrate a breadth of behavior and characteristics eluding simplified descriptions. Indeed, modeling the complex and diverse behavior of interfaces is still an active area of research, and to the author's knowledge there are as yet no predictive models for the energy and morphology of interfaces with arbitrary character. The aim of this thesis is to develop a novel model for interface energy and morphology that i) provides accurate results (especially regarding "energy cusp" locations) for interfaces with arbitrary character, ii) depends on a small set of material parameters, and iii) is fast enough to incorporate into large scale simulations.
In the first half of the work, a model for planar, immiscible grain boundary is formulated. By building on the assumption that anisotropic grain boundary energetics are dominated by geometry and crystallography, a construction on lattice density functions (referred to as "covariance") is introduced that provides a geometric measure of the order of an interface. Covariance forms the basis for a fully general model of the energy of a planar interface, and it is demonstrated by comparison with a wide selection of molecular dynamics energy data for FCC and BCC tilt and twist boundaries that the model accurately reproduces the energy landscape using only three material parameters. It is observed that the planar constraint on the model is, in some cases, over-restrictive; this motivates an extension of the model.
In the second half of the work, the theory of faceting in interfaces is developed and applied to the planar interface model for grain boundaries. Building on previous work in mathematics and materials science, an algorithm is formulated that returns the minimal possible energy attainable by relaxation and the corresponding relaxed morphology for a given planar energy model. It is shown that the relaxation significantly improves the energy results of the planar covariance model for FCC and BCC tilt and twist boundaries. The ability of the model to accurately predict faceting patterns is demonstrated by comparison to molecular dynamics energy data and experimental morphological observation for asymmetric tilt grain boundaries. It is also demonstrated that by varying the temperature in the planar covariance model, it is possible to reproduce a priori the experimentally observed effects of temperature on facet formation.
Finally, the range and scope of the covariance and relaxation models, having been demonstrated by means of extensive MD and experimental comparison, future applications and implementations of the model are explored.
Resumo:
An optoelectronic implementation based on optical neighborhood operations and electronic nonlinear feedback is proposed to perform morphological image processing such as erosion, dilation, opening, closing and edge detection. Results of a numerical simulation are given and experimentally verified.
Resumo:
Egeria densa (PLANCH.) ST. JOHN, a submerged plant invader, forms a wide submerged plant zone, particularly along the west coast of the south basin, Lake Biwa. The macrophyte occupies over 82% of the plant zone in the basin and its biomass reaches 93% of the total. The estimated annual net production was approximately 1 kg dry wt./m2 in a dense area, which is about 4.5 times as much as the net production by phytoplankton in an offshore area of the basin. Although the area covered by the macrophyte is only 5.8% of the total of the basin, it produced about one-tenth of the total annual primary production. In the most productive season Egeria produced 46% of the total primary productivity. Thus, the macrophyte never be neglected when one considers the energy flow or material circulation in the basin. This study was initiated in order to clarify the role of submerged macrophytes, particularly E. densa, in Lake Biwa. The following points are reported in this paper: the distribution of macrophytes in the south basin; seasonal change in standing crop of E. densa; seasonal change in values related to production, utilizing a model proposed by Ikushima with its parameters experimentally determined.
Resumo:
The morphology, increase and systematica of Sphaerotilus natans is studied and culture methods examined.
Resumo:
Análisis de los pastos meso-xerófitos del centro norte de España. El objetivo es conocer la posible relación entre composición florística y los atributos de las plantas. Tratamiento de datos y analísis estadísticos que dan como resultado relaciones numéricas entre los grupos obtenidos en la clasificación y los atributos de las especies. El documento está escrito en Castellano
Resumo:
Recent work carried out in the English Lake District (Esthwaite Water and Blelham Tarn) is reported. The seasonal growth cycle, diel growth cycle, photosynthesis, vertical distribution and migrations, horizontal distribution, and the interaction of environmental factors, were investigated.
Resumo:
The River Great Ouse is a highly managed large lowland river in eastern England. It drains rich arable land in the Midlands and Eastern England and over the years nutrient concentrations have increased and there is a general perception that the clarity of the water has decreased. The main river channels have been dredged a number of times partly for flood control reasons but also for recreational boating and navigation activities. The period covered by this first report has been used to develop specific methodology and instrumentation for measuring turbidity, suspended solids and underwater irradiance for conditions found in the middle abd lower reaches of the River Great Ouse. Sampling strategies have been developed and an extensive sampling programme is now underway covering phytoplankton, suspended solids and turbidity in relation to algal epiphyte growth on underwater macrophytes. Preliminary data are presented relating light levels on the river bed to the river bed profile, turbidity levels and phytoplankton chlorophyll a concentrations. Studies are underway concerning the extent of macrophyte cover and periphyton densities.
Resumo:
Dentro de las medidas protectoras sobre la Reserva de la Biosfera de Urdaibai se encuentra el EDAR (Estación Depuradora de Aguas Residuales) de Lamiaran (Bermeo), que entrará en funcionamiento próximamente (otoño 2014). Para evaluar su impacto sobre el medio costero, el presente estudio realiza una primera valoración del estado ecológico de la costa abierta de la reserva mediante diversos parámetros del fitobentos intermareal. Se estableció una red de muestreo compuesta por dos localidades impactadas y cuatro control. En cada localidad se eligieron aleatoriamente dos estaciones y se muestrearon dos niveles en la zona intermareal inferior. Las localidades impactadas por aguas residuales reflejaban valores bajos de riqueza específica, cobertura, diversidad y cobertura de perennes junto a una mayor abundancia de especies estacionales de morfología simple. Sin embargo los análisis estadísticos no detectaron diferencias significativas entre ambos grupos de localidades (impactadas vs control) detectando únicamente diferencias significativas a nivel de estación, debido en gran medida al efecto de la dispersión de las unidades muestrales para los parámetros estudiados.