984 resultados para Plankton Expedition
Resumo:
Charts are presented of the seasonal variations in the distribution of four phytoplankton and five zooplankton taxa in the North Atlantic and the North Sea. The main factors determining the seasonal variations appear to be the distribution of the main overwintering stocks, the current system and, in some instances, temperature control of the rate of population increase. Information is presented about the variation with latitude (over the range from 34° N to 65 ° N) of the seasonal regime of the plankton. On the assumption that there is a relationship between nutrient supply and vertical temperature stratification the main features of this variability can be interpreted. In the south (to about 43° N) nutrient limitation plus grazing appear to be dominant, resulting in a bimodal seasonal cycle of phytoplankton. North of about 60° N the system appears to be limited by the size of the phytoplankton stocks being grazed primarily by Calanus Finmarchicus and Euphausiacea. In an extensive zone, from about 44° N to 60° N, it would appear that the spring bloom of phytoplankton is under-exploited by grazing while in summer the zooplankton graze the daily production of the phytoplankton, the stocks of which are probably maintained by in situ nutrient regeneration. The implications, for at least this mid-latitude zone, that rates and fluxes of processes, as opposed to density dependent interactions between stocks, play a major role in the dynamics of the seasonal cycle is consistent with previously reported observations suggesting that physical environmental factors play a major role in determining year-to-year fluctuations in the abundance of the plankton.
Resumo:
Geographical variations in the numbers, biomass and production of euphausiids and the contribution of common species to the total are described from samples taken during 1966 and 1967 in the North Atlantic Ocean and the North Sea by the Continuous Plankton Recorder at 10 m depth. Euphausiids were most abundant in the central and western North Atlantic Ocean and the Norwegian Sea. Thysanoessa longicaudata (Krøyer) was numerically dominant. Biomass was greatest in the Norwegian Sea and the north-eastern North Sea where Meganyctiphanes norvegica (M. Sars) accounted for 81 and 59%, respectively, of the total biomass. Production was highest off Nova Scotia and in Iberian coastal waters; the dominant species were T. raschi (M. Sars) in the former area and Nyctiphanes couchi (Bell) in the latter. The mean P:B ratios were correlated with temperature.
Resumo:
Rates of population increase in early spring and the sizes of overwintering stocks were calculated for the planktonic copepods Pseudocalanus elongatus and Acartia clausi for a set of areas covering the open waters of the north-east Atlantic Ocean and the North Sea for the period 1948 to 1979. For both species, the rates of population increase were higher in the open ocean than in the North Sea and appear to be related to temperature. The overwintering stocks in the North Sea were larger than those in the open ocean and are probably related to phytoplanton concentration. P. elongatus shows higher overwintering stocks and lower rates of population increase than A. clausi, resulting in different levels of persistence in the stocks of the two species. It is suggested that this difference in persistence is responsible for differences between the two species with respect to geographical distribution in summer and different patterns of year-to-year fluctuations in abundance.
Resumo:
Year-to-year fluctuations in the abundance of phytoplankton in the North-East Atlantic and the North Sea for the period 1958 to 1980 are described. Based on similarities between their annual fluctuations in abundance, the taxa may be divided into two groups, one of 12 species of diatoms and 1 species of Ceratium, the other of 5 species of Ceratium. The annual fluctuations in abundance of the Ceratium group is negatively correlated with a component of sea surface temperature (representing changes in the open ocean) and with the frequency of cyclonic weather over the United Kingdom. The Diatom group shows very similar annual fluctuations to those of most of the zooplankton species. Both groups show a high ·proportion of long wavelength variability in the form of a more less linear downward trend in abundance over the whole period. There is evidence to suggest that the high proportion of long wavelength variability shown by the zooplankton is influenced by inherent persistence in stocks from year-to year. The phytoplankton show little or no persistence. The close relationship between zooplankton and phytoplankton may, therefore, involve feed-back through nutrient recycling so influencing the annual levels of abundance of phytoplankton.
Continuous Plankton Records - Persistence In Time-Series Of Annual Means Of Abundance Of Zooplankton
Resumo:
Time-series of annual means of abundance of zooplankton of the north-east Atlantic Ocean and the North Sea, for the period 1948 to 1977, show considerable associations between successive years. The seasonal dynamics of the stocks appear to be consistent with at least a proportion of this being due to inherent persistence from year-to-year. Experiments with a simple model suggest that the observed properties of the time-series cannot be reproduced as a response to simple random forcing. The extent of trends and long wavelength variations can be simulated by introducing fairly extensive persistence into the perturbations, but this underestimates the extent of shorter wavelength variability in the observed time-series. The effect of persistence is to increase the proportion of trend and long wavelength variability in time-series of annual means, but stocks can respond to short wavelength perturbations provided these have a clearly defined frequency.
Resumo:
Samples taken in the northern North Sea with the Continuous Plankton Recorder (CPR), the Undulating Oceanographic Recorder (UOR), the Longhurst Hardy Plankton Recorder (LHPR) and by our colleagues from other participating Institutes during the Fladen Ground Experiment (FLEX 76) were used to describe the vertical distribution and population dynamics of Calanus finmarchicus (Gunnerus) and to provide estimates of the production and carbon budget of the population from 19 March to 3 June, 1976. Total production of the 19 March to 3 June, 1976. Total production of the nauplii and copepodite stages (including adults), during the exponential growth phase in May, was estimated to be in the range of 0.49 to 0.91 g C m-2 d-1 or 29.0 to 55 g dry wt m-2 (14.5 to 27.8 g C m-2) for the three successive 10 d periods in May. Two gross growth efficiencies (K 1) (20 and 34%), together with the lower value of C. finmarchicus production, were used to calculate the gross ingestion levels of algae as 2.45 and 1.44 g C m-2 d-1 (73.5 and 43.2 g C m-2 over the May period). These ingestion levels, together with the algae ingested by other zooplankton species, are greater than the estimated total phytoplankton production of 45.9 g C m-2 over the FLEX period. A number of factors are discussed which could explain the discrepancies between the production estimates. One suggestion is that the vertical distribution of the development stages of this herbivorous copepod and their diel and ontogenetic migration patterns enable it to efficiently exploit its food source. Data from the FLEX experiment indicated that the depletion of nutrients limited the size of the spring bloom, but that it was the grazing pressure exerted by C. finmarchicus which was responsible for the control and depletion of the phytoplankton in the spring of 1976 in the northern North Sea.