983 resultados para Planets and Satellites: Atmospheres


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Doped ceria (CeO2,) compounds are fluorite type oxides, which show oxide ionic conductivity higher than yttria stabilized zirconia (YSZ), in oxidizing atmospheres. As a consequence of this, considerable interest has been shown in application of these materials for 'low (500-650 degreesC)' or 'intermediate (650-800 degreesC)' temperature operation, solid oxide fuel cells (SOFCs). In this study, the authors prepared two kinds of nanosize Sm-doped CeO2 particles with different morphologies: one type was round and the other was elongated. Processing these powders with different morphology produced dense materials with very different ionic conducting properties and different nanoscale microstructures. Since both particles are very fine and well dispersed, sintered bodies with high density (relative density >95% of theoretical) could be prepared using both types of powder particles. The electrical conductivity of sintered bodies prepared from these powders with different starting morphologies was very different. Materials prepared from particles having a round shape were much higher than those produced using powders with an elongated morphology. Measured activation energies of the corresponding sintered samples showed a similar trend; round particles (60 kJ/mol), elongated particles (74 kJ/mol). While X-ray diffraction (XRD) profiles of these sintered materials were identical, diffuse scatter was observed in the back.-round of selected area electron diffraction pattern recorded from both sintered bodies. This indicated an underlying structure that appeared to have been influenced by the processing technology. Detailed observation using high-resolution transmission electron microscopy (HR-TEM) revealed that the size of microdomain with ordering of cations in the sintered body made from round shape particles was much smaller than that of the sintered body made from elongated particles. Accordingly, it is concluded that the morphology of doped CeO2 powders strongly influenced the microdomain size and electrolytic properties in the doped CeO2 sintered body. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single phase (Zn,Fe)(1-x) O zincite solid solution samples have been prepared by high temperature equilibration in air and in reducing atmospheres, followed by quenching to room temperature. The Fe2+/Fe3+ concentrations in the samples have been determined using wet chemical and XPS techniques. Iron is found to be present in zincite predominantly in the form of Fe3+ ions. The transition from an equiaxed grain morphology to plate-like zincite crystals is shown to be associated with increasing Fe3+ concentration, increasing elongation in < 001 > of the hexagonal crystals and increasing anisotropic strain along the c-axis. The plate-like crystals are shown to contain planar defects and zincite polytypes at high iron concentrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

(U–Th)/He dating of goethite, when combined with quantification of diffusive 4He loss by the 4He/3He methodology, provides reliable corrected ages for minerals precipitated in weathering profiles. We have combined (U–Th)/He dating of supergene goethite with 40Ar/39Ar dating of supergene manganese oxides to study the weathering history and landscape evolution in the Hamersley Province, northwestern Australia. Incremental heating 40Ar/39Ar analysis of 187 grains of Mn oxides from 65 samples (44 hand specimens) collected from weathering profiles at seven field sites across the Hamersley Province yield precipitation ages ranging from 63.4 ± 0.9 to 1.5 ± 0.2 Ma. These results, combined with previous results of 40Ar/39Ar dating of Mn oxides (Vasconcelos, 1998 Vasconcelos, P.V., 1998. Unpub. report, pp. 1–278.Vasconcelos, 1998 and Cochrane, 2003), reveal a protracted and episodic history of weathering and landscape evolution, which was already ongoing in Late Cretaceous and spans the Palaeogene and Neogene. Seventy-three grains of goethite from 39 samples extracted from 21 hand specimens, collected from the same field sites where the Mn oxides originated, were dated by the (U–Th)/He method. Internally consistent (U–Th)/He ages, which range from 84.3 ± 12.2 to 3.3 ± 0.5 Ma, have been obtained for most samples when corrections are applied for 10% helium diffusive loss. The geochronological results obtained show remarkable similarity in the distribution of ages associated with supergene mineral precipitation. The widespread occurrence of iron oxides such as goethite in soils and weathering profiles and the successful application of (U–Th)/He dating of goethite offers great opportunities for extracting the wealth of palaeoclimatic and palaeoenvironmental information recorded by these profiles on the surface of terrestrial planets such as Earth and Mars.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NASA is working on complex future missions that require cooperation between multiple satellites or rovers. To implement these systems, developers are proposing and using intelligent and autonomous systems. These autonomous missions are new to NASA, and the software development community is just learning to develop such systems. With these new systems, new verification and validation techniques must be used. Current techniques have been developed based on large monolithic systems. These techniques have worked well and reliably, but do not translate to the new autonomous systems that are highly parallel and nondeterministic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among the Solar System’s bodies, Moon, Mercury and Mars are at present, or have been in the recent years, object of space missions aimed, among other topics, also at improving our knowledge about surface composition. Between the techniques to detect planet’s mineralogical composition, both from remote and close range platforms, visible and near-infrared reflectance (VNIR) spectroscopy is a powerful tool, because crystal field absorption bands are related to particular transitional metals in well-defined crystal structures, e.g., Fe2+ in M1 and M2 sites of olivine or pyroxene (Burns, 1993). Thanks to the improvements in the spectrometers onboard the recent missions, a more detailed interpretation of the planetary surfaces can now be delineated. However, quantitative interpretation of planetary surface mineralogy could not always be a simple task. In fact, several factors such as the mineral chemistry, the presence of different minerals that absorb in a narrow spectral range, the regolith with a variable particle size range, the space weathering, the atmosphere composition etc., act in unpredictable ways on the reflectance spectra on a planetary surface (Serventi et al., 2014). One method for the interpretation of reflectance spectra of unknown materials involves the study of a number of spectra acquired in the laboratory under different conditions, such as different mineral abundances or different particle sizes, in order to derive empirical trends. This is the methodology that has been followed in this PhD thesis: the single factors previously listed have been analyzed, creating, in the laboratory, a set of terrestrial analogues with well-defined composition and size. The aim of this work is to provide new tools and criteria to improve the knowledge of the composition of planetary surfaces. In particular, mixtures composed with different content and chemistry of plagioclase and mafic minerals have been spectroscopically analyzed at different particle sizes and with different mineral relative percentages. The reflectance spectra of each mixture have been analyzed both qualitatively (using the software ORIGIN®) and quantitatively applying the Modified Gaussian Model (MGM, Sunshine et al., 1990) algorithm. In particular, the spectral parameter variations of each absorption band have been evaluated versus the volumetric FeO% content in the PL phase and versus the PL modal abundance. This delineated calibration curves of composition vs. spectral parameters and allow implementation of spectral libraries. Furthermore, the trends derived from terrestrial analogues here analyzed and from analogues in the literature have been applied for the interpretation of hyperspectral images of both plagioclase-rich (Moon) and plagioclase-poor (Mars) bodies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, we consider four different scenarios of interest in modern satellite communications. For each scenario, we will propose the use of advanced solutions aimed at increasing the spectral efficiency of the communication links. First, we will investigate the optimization of the current standard for digital video broadcasting. We will increase the symbol rate of the signal and determine the optimal signal bandwidth. We will apply the time packing technique and propose a specifically design constellation. We will then compare some receiver architectures with different performance and complexity. The second scenario still addresses broadcast transmissions, but in a network composed of two satellites. We will compare three alternative transceiver strategies, namely, signals completely overlapped in frequency, frequency division multiplexing, and the Alamouti space-time block code, and, for each technique, we will derive theoretical results on the achievable rates. We will also evaluate the performance of said techniques in three different channel models. The third scenario deals with the application of multiuser detection in multibeam satellite systems. We will analyze a case in which the users are near the edge of the coverage area and, hence, they experience a high level of interference from adjacent cells. Also in this case, three different approaches will be compared. A classical approach in which each beam carries information for a user, a cooperative solution based on time division multiplexing, and the Alamouti scheme. The information theoretical analysis will be followed by the study of practical coded schemes. We will show that the theoretical bounds can be approached by a properly designed code or bit mapping. Finally, we will consider an Earth observation scenario, in which data is generated on the satellite and then transmitted to the ground. We will study two channel models, taking into account one or two transmit antennas, and apply techniques such as time and frequency packing, signal predistortion, multiuser detection and the Alamouti scheme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The accuracy of altimetrically derived oceanographic and geophysical information is limited by the precision of the radial component of the satellite ephemeris. A non-dynamic technique is proposed as a method of reducing the global radial orbit error of altimetric satellites. This involves the recovery of each coefficient of an analytically derived radial error correction through a refinement of crossover difference residuals. The crossover data is supplemented by absolute height measurements to permit the retrieval of otherwise unobservable geographically correlated and linearly combined parameters. The feasibility of the radial reduction procedure is established upon application to the three day repeat orbit of SEASAT. The concept of arc aggregates is devised as a means of extending the method to incorporate longer durations, such as the 35 day repeat period of ERS-1. A continuous orbit is effectively created by including the radial misclosure between consecutive long arcs as an infallible observation. The arc aggregate procedure is validated using a combination of three successive SEASAT ephemerides. A complete simulation of the 501 revolution per 35 day repeat orbit of ERS-1 is derived and the recovery of the global radial orbit error over the full repeat period is successfully accomplished. The radial reduction is dependent upon the geographical locations of the supplementary direct height data. Investigations into the respective influences of various sites proposed for the tracking of ERS-1 by ground-based transponders are carried out. The potential effectiveness on the radial orbital accuracy of locating future tracking sites in regions of high latitudinal magnitude is demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Orbit determination from artificial satellite observations is a key process in obtaining information about the Earth and its environment. A study of the perturbations experienced by these satellites enables knowledge to be gained of the upper atmosphere, the gravity field, ocean tides, solid-Earth tides and solar radiation. The gravity field is expressed as a double infinite series of associated Legendre functions (tesseral harmonics). In contemporary global gravity field models the overall geoid is well determined. An independent check on these gravity field harmonics of a particular order may be made by analysis of satellites that pass through resonance of that order. For such satellites the perturbations of the orbital elements close to resonance are analysed to derive lumped harmonic coefficients. The orbital parameters of 1984-106A have been determined at 43 epochs, during which time the satellite was close to 14th order resonance. Analysis of the inclination and eccentricity yielded 6 lumped harmonic coefficients of order 14 whilst analysis of the mean motion yielded additional pairs of lumped harmonics of orders 14, 28 and 42, with the 14th order harmonics superseding those obtained from analysis of the inclination. This thesis concentrates in detail on the theoretical changes of a near-circular satellite orbit perturbed by the Earth's gravity field under the influence of minimal air-drag whilst in resonance with the Earth. The satellite 1984-106A experienced the interesting property of being temporarily trapped with respect to a secondary resonance parameter due to the low air-drag in 1987. This prompted the theoretical investigation of such a phenomenon. Expressions obtained for the resonance parameter led to the determination of 8 lumped harmonic coefficients, coincidental to those already obtained. All the derived lumped harmonic values arc used to test the accuracy of contemporary gravity field models and the underlying theory in this thesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurements of the sea surface obtained by satellite borne radar altimetry are irregularly spaced and contaminated with various modelling and correction errors. The largest source of uncertainty for low Earth orbiting satellites such as ERS-1 and Geosat may be attributed to orbital modelling errors. The empirical correction of such errors is investigated by examination of single and dual satellite crossovers, with a view to identifying the extent of any signal aliasing: either by removal of long wavelength ocean signals or introduction of additional error signals. From these studies, it was concluded that sinusoidal approximation of the dominant one cycle per revolution orbit error over arc lengths of 11,500 km did not remove a significant mesoscale ocean signal. The use of TOPEX/Poseidon dual crossovers with ERS-1 was shown to substantially improve the radial accuracy of ERS-1, except for some absorption of small TOPEX/Poseidon errors. The extraction of marine geoid information is of great interest to the oceanographic community and was the subject of the second half of this thesis. Firstly through determination of regional mean sea surfaces using Geosat data, it was demonstrated that a dataset with 70cm orbit error contamination could produce a marine geoid map which compares to better than 12cm with an accurate regional high resolution gravimetric geoid. This study was then developed into Optimal Fourier Transform Interpolation, a technique capable of analysing complete altimeter datasets for the determination of consistent global high resolution geoid maps. This method exploits the regular nature of ascending and descending data subsets thus making possible the application of fast Fourier transform algorithms. Quantitative assessment of this method was limited by the lack of global ground truth gravity data, but qualitative results indicate good signal recovery from a single 35-day cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is some evidence to suggest that nitriding of alloy steels, in particular high speed tool steels, under carefully controlled conditions might sharply increase rolling contact fatigue resistance. However, the subsurface shear stresses developed in aerospace bearing applications tend to occur at depths greater than the usual case depths currently produced by nitriding. Additionally, case development must be limited with certain materials due to case spalling and may not always be sufficient to achieve the current theoretical depths necessary to ensure that peak stresses occur within the case. It was the aim of' this work to establish suitable to overcome this problem by plasma nitriding. To assist this development a study has been made of prior hardening treatment, case development, residual stress and case cracking tendency. M2 in the underhardened, undertempered and fully hardened and tempered conditions all responded similarly to plasma nitriding - maximum surface hardening being achieved by plasma nitriding at 450°C. Case development varied linearly with increasing treatment temperature and also with the square root of the treatment time. Maximum surface hardness of M5O and Tl steels was achieved by plasma nitriding in 15% nitrogen/85% hydrogen and varied logarithmically with atmosphere nitrogen content. The case-cracking contact stress varied linearly with nitriding temperature for M2. Tl and M5O supported higher stresses after nitriding in low nitrogen plasma atmospheres. Unidirectional bending fatigue of M2 has been improved up to three times the strength of the fully hardened and tempered condition by plasma nitriding for 16hrs at 400°C. Fatigue strengths of Tl and M5O have been improved by up to 30% by plasma nitriding for 16hrs at 450°C in a 75% hydrogen/25% nitrogen atmosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Satellite information, in combination with conventional point source measurements, can be a valuable source of information. This thesis is devoted to the spatial estimation of areal rainfall over a region using both the measurements from a dense and sparse network of rain-gauges and images from the meteorological satellites. A primary concern is to study the effects of such satellite assisted rainfall estimates on the performance of rainfall-runoff models. Low-cost image processing systems and peripherals are used to process and manipulate the data. Both secondary as well as primary satellite images were used for analysis. The secondary data was obtained from the in-house satellite receiver and the primary data was obtained from an outside source. Ground truth data was obtained from the local Water Authority. A number of algorithms are presented that combine the satellite and conventional data sources to produce areal rainfall estimates and the results are compared with some of the more traditional methodologies. The results indicate that the satellite cloud information is valuable in the assessment of the spatial distribution of areal rainfall, for both half-hourly as well as daily estimates of rainfall. It is also demonstrated how the performance of the simple multiple regression rainfall-runoff model is improved when satellite cloud information is used as a separate input in addition to rainfall estimates from conventional means. The use of low-cost equipment, from image processing systems to satellite imagery, makes it possible for developing countries to introduce such systems in areas where the benefits are greatest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study is concerned with gravity field recovery from low-low satellite to satellite range rate data. An improvement over a coplanar mission is predicted in the errors associated with certain parts of the geopotential by the separation of the orbital planes of the two satellites. Using Hill's equations an analytical scheme to model the range rate residuals is developed. It is flexible enough to model equally well the residuals between pairs of satellites in the same orbital plane or whose planes are separated in right ascension. The possible benefits of such an orientation to gravity field recovery from range rate data can therefore be analysed, and this is done by means of an extensive error analysis. The results of this analysis show that for an optimal planar mission improvements can be made by separating the satellites in right ascension. Gravity field recoveries are performed in order to verify and gauge the limitations of the analytical model, and to support the results of the error analysis. Finally the possible problem of the differential decay rates of two satellites due to the diurnal bulge are evaluated.