823 resultados para Pipeline


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fundamental failure of current approaches to ontology learning is to view it as single pipeline with one or more specific inputs and a single static output. In this paper, we present a novel approach to ontology learning which takes an iterative view of knowledge acquisition for ontologies. Our approach is founded on three open-ended resources: a set of texts, a set of learning patterns and a set of ontological triples, and the system seeks to maintain these in equilibrium. As events occur which disturb this equilibrium, actions are triggered to re-establish a balance between the resources. We present a gold standard based evaluation of the final output of the system, the intermediate output showing the iterative process and a comparison of performance using different seed input. The results are comparable to existing performance in the literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is currently considerable interest in developing general non-linear density models based on latent, or hidden, variables. Such models have the ability to discover the presence of a relatively small number of underlying `causes' which, acting in combination, give rise to the apparent complexity of the observed data set. Unfortunately, to train such models generally requires large computational effort. In this paper we introduce a novel latent variable algorithm which retains the general non-linear capabilities of previous models but which uses a training procedure based on the EM algorithm. We demonstrate the performance of the model on a toy problem and on data from flow diagnostics for a multi-phase oil pipeline.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Latent variable models represent the probability density of data in a space of several dimensions in terms of a smaller number of latent, or hidden, variables. A familiar example is factor analysis which is based on a linear transformations between the latent space and the data space. In this paper we introduce a form of non-linear latent variable model called the Generative Topographic Mapping, for which the parameters of the model can be determined using the EM algorithm. GTM provides a principled alternative to the widely used Self-Organizing Map (SOM) of Kohonen (1982), and overcomes most of the significant limitations of the SOM. We demonstrate the performance of the GTM algorithm on a toy problem and on simulated data from flow diagnostics for a multi-phase oil pipeline.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Self-Organizing Map (SOM) algorithm has been extensively studied and has been applied with considerable success to a wide variety of problems. However, the algorithm is derived from heuristic ideas and this leads to a number of significant limitations. In this paper, we consider the problem of modelling the probability density of data in a space of several dimensions in terms of a smaller number of latent, or hidden, variables. We introduce a novel form of latent variable model, which we call the GTM algorithm (for Generative Topographic Mapping), which allows general non-linear transformations from latent space to data space, and which is trained using the EM (expectation-maximization) algorithm. Our approach overcomes the limitations of the SOM, while introducing no significant disadvantages. We demonstrate the performance of the GTM algorithm on simulated data from flow diagnostics for a multi-phase oil pipeline.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Latent variable models represent the probability density of data in a space of several dimensions in terms of a smaller number of latent, or hidden, variables. A familiar example is factor analysis which is based on a linear transformations between the latent space and the data space. In this paper we introduce a form of non-linear latent variable model called the Generative Topographic Mapping, for which the parameters of the model can be determined using the EM algorithm. GTM provides a principled alternative to the widely used Self-Organizing Map (SOM) of Kohonen (1982), and overcomes most of the significant limitations of the SOM. We demonstrate the performance of the GTM algorithm on a toy problem and on simulated data from flow diagnostics for a multi-phase oil pipeline.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The existing method of pipeline health monitoring, which requires an entire pipeline to be inspected periodically, is unproductive. A risk-based decision support system (DSS) that reduces the amount of time spent on inspection has been presented. The risk-based DSS uses the analytic hierarchy process (AHP), a multiple attribute decision-making technique, to identify the factors that influence failure on specific segments and analyzes their effects by determining probability of occurrence of these risk factors. The severity of failure is determined through consequence analysis. From this, the effect of a failure caused by each risk factor can be established in terms of cost and the cumulative effect of failure is determined through probability analysis. The model optimizes the cost of pipeline operations by reducing subjectivity in selecting a specific inspection method, identifying and prioritizing the right pipeline segment for inspection and maintenance, deriving budget allocation, providing guidance to deploy the right mix labor for inspection and maintenance, planning emergency preparation, and deriving logical insurance plan. The proposed methodology also helps derive inspection and maintenance policy for the entire pipeline system, suggest design, operational philosophy, and construction methodology for new pipelines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Offshore oil and gas pipelines are vulnerable to environment as any leak and burst in pipelines cause oil/gas spill resulting in huge negative Impacts on marine lives. Breakdown maintenance of these pipelines is also cost-intensive and time-consuming resulting in huge tangible and intangible loss to the pipeline operators. Pipelines health monitoring and integrity analysis have been researched a lot for successful pipeline operations and risk-based maintenance model is one of the outcomes of those researches. This study develops a risk-based maintenance model using a combined multiple-criteria decision-making and weight method for offshore oil and gas pipelines in Thailand with the active participation of experienced executives. The model's effectiveness has been demonstrated through real life application on oil and gas pipelines in the Gulf of Thailand. Practical implications. Risk-based inspection and maintenance methodology is particularly important for oil pipelines system, as any failure in the system will not only affect productivity negatively but also has tremendous negative environmental impact. The proposed model helps the pipelines operators to analyze the health of pipelines dynamically, to select specific inspection and maintenance method for specific section in line with its probability and severity of failure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The evaluation and selection of industrial projects before investment decision is customarily done using marketing, technical and financial information. Subsequently, environmental impact assessment and social impact assessment are carried out mainly to satisfy the statutory agencies. Because of stricter environment regulations in developed and developing countries, quite often impact assessment suggests alternate sites, technologies, designs, and implementation methods as mitigating measures. This causes considerable delay to complete project feasibility analysis and selection as complete analysis requires to be taken up again and again till the statutory regulatory authority approves the project. Moreover, project analysis through above process often results sub-optimal project as financial analysis may eliminate better options, as more environment friendly alternative will always be cost intensive. In this circumstance, this study proposes a decision support system, which analyses projects with respect to market, technicalities, and social and environmental impact in an integrated framework using analytic hierarchy process, a multiple-attribute decision-making technique. This not only reduces duration of project evaluation and selection, but also helps select optimal project for the organization for sustainable development. The entire methodology has been applied to a cross-country oil pipeline project in India and its effectiveness has been demonstrated. © 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Risks and uncertainties are part and parcel of any project as projects are planned with many assumptions. Therefore, managing those risks is the key to project success. Although risk is present in all most all projects, large-scale construction projects are most vulnerable. Risk is by nature subjective. However, managing risk subjectively posses the danger of non-achievement of project goals. This study introduces an analytical framework for managing risk in projects. All the risk factors are identified, their effects are analyzed, and alternative responses are derived with cost implication for mitigating the identified risks. A decision-making framework is then formulated using decision tree. The expected monetary values are derived for each alternative. The responses, which require least cost is selected. The entire methodology has been explained through a case study of an oil pipeline project in India and its effectiveness in managing projects has been demonstrated. © INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The evaluation and selection of industrial projects before investment decision is customarily done using marketing, technical, and financial information. Subsequently, environmental impact assessment and social impact assessment are carried out mainly to satisfy the statutory agencies. Because of stricter environment regulations in developed and developing countries, quite often impact assessment suggests alternate sites, technologies, designs, and implementation methods as mitigating measures. This causes considerable delay to complete project feasibility analysis and selection as complete analysis requires to be taken up again and again until the statutory regulatory authority approves the project. Moreover, project analysis through the above process often results in suboptimal projects as financial analysis may eliminate better options as more environment friendly alternative will always be cost intensive. In this circumstance, this study proposes a decision support system which analyses projects with respect to market, technicalities, and social and environmental impact in an integrated framework using analytic hierarchy process, a multiple attribute decision-making technique. This not only reduces duration of project evaluation and selection, but also helps select an optimal project for the organization for sustainable development. The entire methodology has been applied to a cross-country oil pipeline project in India and its effectiveness has been demonstrated. © 2008, IGI Global.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Time, cost and quality achievements on large-scale construction projects are uncertain because of technological constraints, involvement of many stakeholders, long durations, large capital requirements and improper scope definitions. Projects that are exposed to such an uncertain environment can effectively be managed with the application of risk management throughout the project life cycle. Risk is by nature subjective. However, managing risk subjectively poses the danger of non-achievement of project goals. Moreover, risk analysis of the overall project also poses the danger of developing inappropriate responses. This article demonstrates a quantitative approach to construction risk management through an analytic hierarchy process (AHP) and decision tree analysis. The entire project is classified to form a few work packages. With the involvement of project stakeholders, risky work packages are identified. As all the risk factors are identified, their effects are quantified by determining probability (using AHP) and severity (guess estimate). Various alternative responses are generated, listing the cost implications of mitigating the quantified risks. The expected monetary values are derived for each alternative in a decision tree framework and subsequent probability analysis helps to make the right decision in managing risks. In this article, the entire methodology is explained by using a case application of a cross-country petroleum pipeline project in India. The case study demonstrates the project management effectiveness of using AHP and DTA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An inherent weakness in the management of large scale projects is the failure to achieve the scheduled completion date. When projects are planned with the objective of time achievement, the initial planning plays a vital role in the successful achievement of project deadlines. Cost and quality are additional priorities when such projects are being executed. This article proposes a methodology for achieving time duration of a project through risk analysis with the application of a Monte Carlo simulation technique. The methodology is demonstrated using a case application of a cross-country petroleum pipeline construction project.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Feasibility studies of industrial projects consist of multiple analyses carried out sequentially. This is time consuming and each analysis screens out alternatives based solely on the merits of that analysis. In cross-country petroleum pipeline project selection, market analysis determines throughput requirement and supply and demand points. Technical analysis identifies technological options and alternatives for pipe-line routes. Economic and financial analysis derive the least-cost option. The impact assessment addresses environmental issues. The impact assessment often suggests alternative sites, routes, technologies, and/or implementation methodology, necessitating revision of technical and financial analysis. This report suggests an integrated approach to feasibility analysis presented as a case application of a cross-country petroleum pipeline project in India.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study demonstrates a quantitative approach to construction risk management through analytic hierarchy process and decision tree analysis. All the risk factors are identified, their effects are quantified by determining probability and severity, and various alternative responses are generated with cost implication for mitigating the quantified risks. The expected monetary values are then derived for each alternative in a decision tree framework and subsequent probability analysis aids the decision process in managing risks. The entire methodology is explained through a case application of a cross-country petroleum pipeline project in India and its effectiveness in project management is demonstrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conventional project management techniques are not always sufficient for ensuring time, cost and quality achievement of large-scale construction projects due to complexity in planning and implementation processes. The main reasons for project non-achievement are changes in scope and design, changes in Government policies and regulations, unforeseen inflation) under-estimation and improper estimation. Projects that are exposed to such an uncertain environment can be effectively managed with the application of risk numagement throughout project life cycle. However, the effectiveness of risk management depends on the technique in which the effects of risk factors are analysed and! or quantified. This study proposes Analytic Hierarchy Process (AHP), a multiple attribute decision-making technique as a tool for risk analysis because it can handle subjective as well as objective factors in decision model that are conflicting in nature. This provides a decision support system (DSS) to project managenumt for making the right decision at the right time for ensuring project success in line with organisation policy, project objectives and competitive business environment. The whole methodology is explained through a case study of a cross-country petroleum pipeline project in India and its effectiveness in project1nana.gement is demonstrated.