946 resultados para Pianificazione radio, MIMO, DAS, Comunicazioni radiomobili
Resumo:
A compact planar array with parasitic elements is studied to be used in MIMO systems. Classical compact arrays suffer from high coupling which makes correlation and matching efficiency to be worse. A proper matching network improves these lacks although its bandwidth is low and may increase the antenna size. The proposed antenna makes use of parasitic elements to improve both correlation and efficiency. A specific software based on MoM has been developed to analyze radiating structures with several feed points. The array is optimized through a Genetic Algorithm to determine parasitic elements position in order to fulfill different figures of merit. The proposed design provides the required correlation and matching efficiency to have a good performance over a significant bandwidth.
Resumo:
In order to comply with the demand on increasing available data rates in particular in wireless technologies, systems with multiple transmit and receive antennas, also called MIMO (multiple-input multiple-output) systems, have become indispensable for future generations of wireless systems. Due to the strongly increasing demand in high-data rate transmission systems, frequency non-selective MIMO links have reached a state of maturity and frequency selective MIMO links are in the focus of interest. In this field, the combination of MIMO transmission and OFDM (orthogonal frequency division multiplexing) can be considered as an essential part of fulfilling the requirements of future generations of wireless systems. However, single-user scenarios have reached a state of maturity. By contrast multiple users’ scenarios require substantial further research, where in comparison to ZF (zero-forcing) multiuser transmission techniques, the individual user’s channel characteristics are taken into consideration in this contribution. The performed joint optimization of the number of activated MIMO layers and the number of transmitted bits per subcarrier along with the appropriate allocation of the transmit power shows that not necessarily all user-specific MIMO layers per subcarrier have to be activated in order to minimize the overall BER under the constraint of a given fixed data throughput.
Resumo:
In this paper we present a novel Radio Frequency Identification (RFID) system for accurate indoor localization. The system is composed of a standard Ultra High Frequency (UHF), ISO-18006C compliant RFID reader, a large set of standard passive RFID tags whose locations are known, and a newly developed tag-like RFID component that is attached to the items that need to be localized. The new semi-passive component, referred to as sensatag (sense-a-tag), has a dual functionality wherein it can sense the communication between the reader and standard tags which are in its proximity, and also communicate with the reader like standard tags using backscatter modulation. Based on the information conveyed by the sensatags to the reader, localization algorithms based on binary sensor principles can be developed. We present results from real measurements that show the accuracy of the proposed system.
Resumo:
In this paper the capabilities of ultra low power FPGAs to implement Wake-up Radios (WuR) for ultra low energy Wireless Sensor Networks (WSNs) are analyzed. The main goal is to evaluate the utilization of very low power configurable devices to take advantage of their speed, flexibility and low power consumption instead of the more common approaches based on ASICs or microcontrollers. In this context, energy efficiency is a key aspect, considering that usually the instant power consumption is considered a figure of merit, more than the total energy consumed by the application.
Resumo:
In this paper an implementation of a Wake up Radio(WuR) with addressing capabilities based on an ultra low power FPGA for ultra low energy Wireless Sensor Networks (WSNs) is proposed. The main goal is to evaluate the utilization of very low power configurable devices to take advantage of their speed, flexibility and low power consumption instead of the traditional approaches based on ASICs or microcontrollers, for communication frame decoding and communication data control.
Resumo:
Este Proyecto Investigador se presenta como parte de la documentación requerida para el Concurso de Acceso a plazas de cuerpos docentes universitarios. Centro: E.T.S.I. de Telecomunicación. Cuerpo: Profesores Titulares de Universidad. Departamento: Señales, Sistemas y Radiocomunicaciones (0935). Área de conocimiento: Teoría de la Señal y Comunicaciones (800). Perfil docente: Radiocomunicaciones; Comunicaciones Móviles. Perfil investigador: Tecnología de las Telecomunicaciones (3325). Dedicación: Completa
Resumo:
Multiuser multiple-input multiple-output (MIMO) downlink (DL) transmission schemes experience both multiuser interference as well as inter-antenna interference. The singular value decomposition provides an appropriate mean to process channel information and allows us to take the individual user’s channel characteristics into account rather than treating all users channels jointly as in zero-forcing (ZF) multiuser transmission techniques. However, uncorrelated MIMO channels has attracted a lot of attention and reached a state of maturity. By contrast, the performance analysis in the presence of antenna fading correlation, which decreases the channel capacity, requires substantial further research. The joint optimization of the number of activated MIMO layers and the number of bits per symbol along with the appropriate allocation of the transmit power shows that not necessarily all user-specific MIMO layers has to be activated in order to minimize the overall BER under the constraint of a given fixed data throughput.
Resumo:
In order to comply with the demand on increasing available data rates in particular in wireless technologies, systems with multiple transmit and receive antennas, also called MIMO (multiple-input multiple-output) systems, have become indispensable for future generations of wireless systems. Due to the strongly increasing demand in high-data rate transmission systems, frequency non-selective MIMO links have reached a state of maturity and frequency selective MIMO links are in the focus of interest. In this field, the combination of MIMO transmission and OFDM (orthogonal frequency division multiplexing) can be considered as an essential part of fulfilling the requirements of future generations of wireless systems. However, single-user scenarios have reached a state of maturity. By contrast multiple users’ scenarios require substantial further research, where in comparison to ZF (zero-forcing) multiuser transmission techniques, the individual user’s channel characteristics are taken into consideration in this contribution. The performed joint optimization of the number of activated MIMO layers and the number of transmitted bits per subcarrier along with the appropriate allocation of the transmit power shows that not necessarily all user-specific MIMO layers per subcarrier have to be activated in order to minimize the overall BER under the constraint of a given fixed data throughput