945 resultados para Physiological aspects.
Resumo:
Juveniles of limnothrissa miodon (Boulenger) were introduced into the man-made Lake Kariba in 1967-1968. Thirty months of night-fishing for this species from Sinazongwe, near the centre of the Kariba North bank, from 1971 to 1974 are described. Biological studies were carried out on samples of the catch during most of these months. Limnological studies were carried out over a period of four months in 1973. Limnothrissa is breeding successfully and its number have greatly increased. It has reached an equilibrium level of population size at a lower density than that of Lake Tanganyika sardines, but nevertheless is an important factor in the ecology of Lake Kariba. The growth rate, size at maturity and maximum size are all less than those of Lake Tanganyika Limnothrissa. A marked disruption in the orderly progression of length frequency modes occurs in September, for which the present body of evidence cannot supply an explanation.
Resumo:
The ability to volitionally regulate emotions helps to adapt behavior to changing environmental demands and can alleviate subjective distress. We show that a cognitive strategy of detachment attenuates subjective and physiological measures of anticipatory anxiety for pain and reduces reactivity to receipt of pain itself. Using functional magnetic resonance imaging, we locate the potential site and source of this modulation of anticipatory anxiety in the medial prefrontal/anterior cingulate and anterolateral prefrontal cortex, respectively.
Resumo:
Our nervous system can efficiently recognize objects in spite of changes in contextual variables such as perspective or lighting conditions. Several lines of research have proposed that this ability for invariant recognition is learned by exploiting the fact that object identities typically vary more slowly in time than contextual variables or noise. Here, we study the question of how this "temporal stability" or "slowness" approach can be implemented within the limits of biologically realistic spike-based learning rules. We first show that slow feature analysis, an algorithm that is based on slowness, can be implemented in linear continuous model neurons by means of a modified Hebbian learning rule. This approach provides a link to the trace rule, which is another implementation of slowness learning. Then, we show analytically that for linear Poisson neurons, slowness learning can be implemented by spike-timing-dependent plasticity (STDP) with a specific learning window. By studying the learning dynamics of STDP, we show that for functional interpretations of STDP, it is not the learning window alone that is relevant but rather the convolution of the learning window with the postsynaptic potential. We then derive STDP learning windows that implement slow feature analysis and the "trace rule." The resulting learning windows are compatible with physiological data both in shape and timescale. Moreover, our analysis shows that the learning window can be split into two functionally different components that are sensitive to reversible and irreversible aspects of the input statistics, respectively. The theory indicates that irreversible input statistics are not in favor of stable weight distributions but may generate oscillatory weight dynamics. Our analysis offers a novel interpretation for the functional role of STDP in physiological neurons.
Resumo:
We captured free-ranging male Yangtze finless porpoises over three seasons and assayed leukocytes and serum biochemistry to investigate physiological responses to the capture and handlings. Serum thyroid hormones (THs) declined sharply in those porpoises compared with hormone variation in a captive male finless porpoise. Hypernatremia and hypokalemia were also significant in the free-ranging animals suggesting that conservation of serum sodium might be acutely vital for this freshwater subspecies. The animals captured in spring showed more significant neutrophilia and eosinopenia than those captured in autumn suggesting that they may be more affected by capture during the breeding season. Furthermore, physical examination of porpoises when out of the water was apparently stressful, particularly when they were kept out of the water for longer periods. However, an increase in circulating THs may be an adaptive response to accommodate these short-term stresses.
Resumo:
A recent study has shown that nonanoic acid (NA) is one of the strongest allelochemicals to a cyanobacterium Microcystis aeruginosa, but the physiological responses of M. aeruginosa to NA stress remain unknown. In this study, physiological characters such as the growth rate, photosynthetic processes, phosphorus and nitrogen uptake kinetics, and the contents of intracellular microcystin of M. aeruginosa PCC7806 were studied under the NA stress. The results showed that the growth rates of M. aeruginosa PCC 7806 were significantly inhibited in all NA stress treatments during first 3 days after exposure, and the growth rate was recovered after 5-day exposure. After 2-day exposure, the contents of both phycocyanin and allophycocyanin per cell decreased at NA concentration of 4 mg L-1, and oxygen evolution was inhibited even at the concentration of 0.5 mg L-1, but carotenoid content per cell was slightly boosted in NA stress. Physiological recovery of M. aeruginosa PCC7806 was observed after 7-day exposure to NA. It was shown that NA stress had no effect on uptake of nitrogen, but could stimulate the uptake of phosphorus. The contents of intracellular microcystin have not been affected in all NA treatments in contrast with the control. (C) 2008 Wiley Periodicals, Inc. Environ Toxicol 24: 610-617, 2009.
Resumo:
Iron is an essential trace element for biological requirements of phytoplankton. Effects of iron on physiological and biochemical characteristics of Microcystis wesenbergii were conducted in this study. Results showed that 0.01 mu M [Fe3+] seriously inhibited growth and chlorophyll synthesis of M. wesenbergii, and induced temporary increase of ATPase activities, however, NR. ACP and ALP activities were restrained by iron limitation. Interestingly, iron addition on day 8 resulted in the gradual restoration of structures and functions of above enzymes and resisted a variety of stresses from iron limitation. M. wesenbergii in 10 mu M [Fe3+] treatment group grew normally. enzymes maintained normal levels, and residual phosphate contents in cultures first sharply decreased, then smoothly as M. wesenbergii has a characteristic of luxury consumption of phosphorus. Above parameters in 100 mu M [Fe3+] treatment group were almost same with those in 10 mu M [Fe3+] treatment group except for NR, ACP and ALP activities. In 100 mu M [Fe3+] treatment group, activities of ACP and ALP had temporary increase because phosphate and ferric iron could form insoluble compound - ferric phosphate (Fe3PO4) through adsorption effect. resulting in lack of bioavailable phosphate in culture media. The experiment suggested that too low or too high iron can affect obviously physiological and biochemical characteristics of M. wesenbergii.
Resumo:
The submersed macrophyte, Vallisneria natans L., was cultured in laboratory with NH (4) (+) -enriched tap water (1 mg L-1 NH4-N) for 2 months and the stressful effects of high ammonium (NH (4) (+) ) concentrations in the water column on this species was evaluated. The plant growth was severely inhibited by the NH (4) (+) supplement in the water column. The plant carbon and nitrogen metabolisms were disturbed by the NH (4) (+) supplement as indicated by the accumulation of free amino acids and the depletion of soluble carbohydrates in the plant tissues. The results suggested that high NH (4) (+) concentrations in the water column may hamper the restoration of submersed vegetation in eutrophic lakes.
Resumo:
The phytoplankton community in Lake Dianchi (Yunnan Province, Southwestern China) is dominated in April by a bloom of Aphanizomenon, that disappears Suddenly and is displaced by a Microcystis bloom in May. The reasons for the rapid bloom disappearance phenomenon and the temporal variability in the composition of phytoplankton assemblages are poorly understood. Cell growth, ultrastructure and physiological changes were examined in cultures of Aphanizomenon sp. DC01 isolated from Lake Dianchi exposed to different closes of rnicrocystin-RR (MC-RR) produced by the Microcystis bloom. MC-RR concentrations above 100 mu g L-1 markedly inhibited the pigment (chlorophyll-a, phycocyanin) synthesis and caused an increase of soluble carbohydrate and protein contents and nitrate reductase activity of toxin-treated blue-green algae. A drastic. reduction in photochemical efficiency of PSII (Fv/Fm) was also found. Morphological examinationn showed that the Aphanizomenon filaments disintegrated and file cells lysed gradually after 48 h Of toxin exposure. Transmission electron microscopy revealed that cellular inclusions of stressed cells almost leaked out completely and the cell membranes were grossly damaged. These findings demonstrate the allelopathic activity of Microcystis aeruginosa inducing physiological stress and cell death of Aphanizomenon sp. DC01 Although the active concentrations of microcystin were rather high, we propose that microcystin may function as allelopathic Substance due to inhomogeneous toxin concentrations close to Microcystis cells. Hence, it may play a role in species Succession of Aphanizomenon and Microcystis in Lake Dianchi.
Resumo:
The edible blue-green alga, Nostoc sphaeroides Kutzing, is able to form microcolonies and spherical macrocolonies. It has been used as a potent herbal medicine and dietary supplement for centuries because of its nutraceutical and pharmacological benefits. However, limited information is available on the development of the spherical macrocolonies and the environmental factors that affect their structure. This report described the morphogenesis of N. sphaeroides from single trichomes to macrocolonies. During the process, most structural features of macrocolonies of various sizes were dense maculas, rings, the compact core and the formation of liquid core; and the. laments within the macrocolonies showed different lengths and arrays depending on the sizes of macrocolonies. Meanwhile temperature and light intensity also strongly affected the internal structure of macrocolonies. As microcolonies further increased in size to form 30 mm macrocolonies, the colonies differentiated into distinct outer, middle and inner layers. The. laments of the outer layer showed higher maximum photosynthetic rates, higher light saturation point, and higher photosynthetic effciency than those of the inner layer; whereas the. laments of the inner layer had a higher content of chlorophyll a and phycobiliproteins than those of the outer layer. The results obtained in this study were important for the mass cultivation of N. sphaeroides as a nutraceutical product. (c) 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.
Resumo:
We reported diet fluctuation in isotopic composition of surface seston from two connected lakes in China, oligotrophic Lake Fuxian and eutrophic Lake Xingyun. The decrease in nighttime and the increase in daytime of isotope signatures of seston might be attributed to the light-dependent balance between the photosynthesis and the respiration of phytoplankton and to the changes in the species composition and the relative abundance of phytoplankton functional groups at the water's surface in diel growth. The relatively high isotopic signatures and the large-extent diel fluctuation of phytoplankton in the eutrophic lake could be due to utilization of heavy-isotope-enriched inorganic sources and the high primary productivity. Extent of diel fluctuation in delta C-13 and delta N-15 of phytoplankton were relatively small compared with the isotopic enrichment per trophic transfer and thus might have negligible effect on the source identification and the trophic evaluation of consumers.
Resumo:
This paper reviews the development of system techniques using advanced modulation formats that have arisen in recent years for use in datacommunications. Simulations are provided to allow comparison of the emerging schemes. © OSA/OFC/NFOEC 2011.
Resumo:
Feeding and growth traits of Cyprinus carpio and Cyprinus pellegrini (both at age-0) were compared in three experiment, in an attempt to analyze potential causes for the displacement of the native C. pellegrini in the Xingyun Lake, Yuxi, Yunan, China. Experiment I was conducted in water which fluctuated between 15 and 20 degrees C. Experiment II and III were conducted in a laboratory and water temperature was maintained between 20 degrees C and 25 degrees C, respectively. Three common trends were noted for all three experiments: (1) feeding rate of C. carpio was lower than that of C. pellegrini, and this difference was found to be significant in experiment I; (2) growth rate of C. carpio was higher than C. pellegrini, and the difference was found to be significant in experiment II; (3) food conversion efficiency and energy retention efficiency for C. carpio were higher than those of C. pellegrini, and significant differences were noted in experiment I and II. Since the growth period for fish in the Xingyun Lake generally occurs when water temperatures are between 15 and 25 degrees C, it can be suggested that C. carpio has advantages over C. pellegrini in growth and food utilization efficiency, and lower food consumption than C. pellegrini. These physiological traits of C. carpio might allow this species to be more resistant to food shortage and predation, and may be partially responsible for the displacement of C. pellegrini by C. carpio.
Resumo:
In order to gain insight into the bloom sustainment of colonial Microcystis aeruginosa Katz., physiological characterizations were undertaken in this study. Compared with unicellular Microcystis, colonial Microcystis phenotypes exhibited a higher maximum photosynthetic rate (Pm), a higher maximum electron transfer rate (ETRmax), higher phycocyanin content, and a higher affinity for inorganic carbon (K-0.5 DIC <= 8.4 +/- 0.7 mu M) during the growth period monitored in this study. This suggests that photosynthetic efficiency is a dominant physiological adaptation found in colonial Microcystis, thus promoting bloom sustainment. In addition, the high content of soluble and total carbohydrates in colonial Microcystis suggests that this phenotype may possess a higher ability to tolerate enhanced stress conditions when compared to unicellular (noncolonial) phenotypes. Therefore, high photosynthetic activities and high tolerance abilities may explain the bloom sustainment of colonial Microcystis in eutrophic lakes.
Resumo:
Scytonema javanicum (Kutz.) Born et Flah (cyanobacterium) is one of the species distributed widely in the crust of desert soils regularly subjected to severe water stress. To investigate the response of the species to salt stress, many physiological and biochemical parameters, including growth rate, ratio of variable fluorescence to maximum fluorescence (Fv/Fm), reactive oxidative species (ROS), malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD), were determined in culture. The results showed that 50 mM NaCl inhibited growth and Fv/Fm in the medium BG-110, and that the inhibition was maximum after 1-2 days' exposure to salt stress; 50 mM NaCl also increased the contents of ROS and MDA in treated cells, which suggests that salt stress may lead to oxidative damage and lipid peroxidation in the alga. Further, changes in the antioxidative enzymes SOD and CAT in the treated alga were consistent with changes in ROS and MDA at certain extent. These observations suggest that oxidative stress resulting from salt stress in S. javanicum could result in the production of antioxidative enzymes to counteract the oxidative damage, and the enzymes may contribute to the ability of S. javanicum to survive the adverse desert environment. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Physiological and biochemical responses of four fishes with different trophic levels to toxic cyanobacterial blooms were studied in a large net cage in Meiliang Bay, a hypereutrophic region of Lake Taihu. We sampled four fishes: the phytoplanktivorous Hypophthalmichthys molitrix and Aristichthys nobilis, the omnivorous Carassius auratus, and the carnivorous Culter ilishaeformis. Alterations of the antioxidant (GSH) and the major antioxidant enzymes (CAT, SOD, GPx, GST) in livers were monitored monthly, and the ultrastructures of livers were compared between the bloom and post-bloom periods. During the cyanobacterial blooms, the phytoplanktivorous fishes displayed only slight ultrastructural changes in liver, while the carnivorous fish presented the most serious injury as swollen endomembrane system and morphologically altered nuclei in hepatocytes. Biochemically, the phytoplanktivorous fishes possessed higher basal GSH concentrations and better correlations between the major antioxidant enzymes in liver, which might be responsible for their powerful resistance to MCs. This article provided physiological and toxicological evidences for the possible succession of fish communities following occurrence of toxic cyanobacterial blooms and also for the applicability of using phytoplanktivorous fish to counteract toxic cyanobacterial blooms in natural waters. (C) 2007 Elsevier Ltd. All rights reserved.